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Abstract. Physical and biogeochemical ocean dynamics can be inter-
mittent and highly variable, and involve interactions on multiple scales.
In general, the oceanic fields, processes and interactions that matter thus
vary in time and space. For efficient forecasting, the structures and pa-
rameters of models must evolve and respond dynamically to new data in-
jected into the executing prediction system. The conceptual basis of this
adaptive modeling and corresponding computational scheme is the sub-
ject of this presentation. Specifically, we discuss the process of adaptive
modeling for coupled physical and biogeochemical ocean models. The
adaptivity is introduced within an interdisciplinary prediction system.
Model-data misfits and data assimilation schemes are used to provide
feedback from measurements to applications and modify the runtime be-
havior of the prediction system. Illustrative examples in Massachusetts
Bay and Monterey Bay are presented to highlight ongoing progress.

1 Introduction

A team of scientists and engineers is collaborating to contribute to the advance-
ment of interdisciplinary ocean science and forecasting through an effective union
of ocean sciences and information technologies, focusing on adaptive model-
ing and adaptive sampling for coastal physical-biogeochemical-acoustical pro-
cesses. Accurate ocean predictions and optimized rapid responses are essential
for many oceanic applications, including fisheries, pollution control, hazard man-
agement, and maritime and naval operations. Because of multiple uncertainties
in oceanic measurements and dynamical models, these capabilities require assim-
ilation of physical, biogeochemical and acoustical data into dynamical models.
Importantly, the coastal environment can be highly variable and intermittent on
multiple scales, and oceanic variables, parameters and interactions that matter
vary in time and space. Thus, efficient models must evolve during predictions.
This evolution occurs as new data is injected and assimilated into the prediction
system. The data-model comparisons of the data assimilation process then also
involve a direct feedback of the data to the models, forming a dynamic data-
driven application system (DDDAS [1]). The focus of this paper is to present and
illustrate a conceptual basis for such adaptive ocean modeling and prediction.
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The advances in oceanic numerical models and data assimilation (DA, [2])
schemes of the last decade have given rise to interdisciplinary Ocean Observing
and Prediction Systems (e.g. [3]) that are used in operational settings. The next
generation of such systems will advance the interaction between simulation and
measurement to a new level where the forecast application changes its runtime
behavior to adapt to new measurements. Importantly, the data assimilation com-
munity [4] is starting to recognize the importance of this adaptation, from the
correction of model biases to the multi-model data assimilation and automated
evolution of model structures as a function of model-data misfits.

Automated objective adaptive modeling allows the optimal use of approxi-
mate models for rapidly evolving ocean dynamics. Presently, a model quantity
is said to be adaptive if its formulation, classically assumed constant, is made
variable as a function of data values. Both structural as well as parametric
adaptation are possible. Physical adaptive modeling includes regime transition
(e.g., well-mixed to stratified) and evolving turbulent mixing parameterizations.
Biogeochemical adaptive modeling includes variations of biological assemblages
with time and space (e.g., variable zooplankton dynamics, summer to fall phy-
toplankton populations, etc) and evolving biogeochemical rates and ratios. This
is especially important because biogeochemical modeling is in its infancy and
model uncertainties are very large. The adaptive component also greatly facili-
tates quantitative comparisons of competing physical or biogeochemical models,
thus ultimately leading to better scientific understanding.

In what follows, Section 2 outlines several properties of ocean forecasting
and DA schemes that are relevant for adaptive modeling. Section 3 describes the
conceptual basis of our implementation of adaptivity. Section 4 illustrates some
initial progress toward such dynamic data-driven systems. Section 5 concludes.

2 Adaptive ocean predictions and data assimilation

The presently employed interdisciplinary nowcasting and forecasting system is
the Harvard Ocean Prediction System (HOPS, [3]). The DA scheme is Error Sub-
space Statistical Estimation (ESSE, [5]). The high level architecture involves the
component encapsulation of binaries using XML [6]. HOPS is a portable and
generic system that simulates the 4D ocean dynamics. It has been applied to
many regions [3] and has provided accurate operational forecasts. With adap-
tive modeling, the data assimilated by HOPS corrects not only field estimates
but also the forecast model itself, leading to a dynamic system. ESSE combines
forecasts and data based on their errors. It captures the uncertainties that mat-
ter by focusing on the largest error modes. These dominant errors are evolved
by an ensemble (Monte-Carlo) approach. The ESSE predictions of uncertain-
ties in the forecast are central to adaptive modeling based on Bayesian system
identification.

To carry-out adaptive ocean modeling based on dynamic data-driven schemes,
one must account for specific properties of ocean predictions and data assimi-
lation. These include: forecasting timelines, data transfers and processing, mea-
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surement models to link data to predictive models, dynamical adjustments, and
multivariate error covariances. These properties are discussed next.

An important consideration for real-time adaptive modeling relates to the dif-
ferent times involved in ocean forecasting: the observation time, forecaster time
and simulation time (Fig. 1). New observations are made available in batches
(Fig. 1, first row) during periods T}, from the start of the experiment (75) up to
the final time (7). During the experiment, for each prediction & (Fig. 1, zoom
in middle row), the forecaster repeats a set of tasks (from 7 to T]’f) These tasks
include the processing of the currently available data and model (from 7¥ to

t5), the computation of 7 + 1 data-driven forecast simulations (from f to %),

and the study, selection and web-distribution of the best forecasts (from t?rr to
T]]f) Within these forecast computations, a specific forecast simulation i (Fig.
1, zoom in bottom row) is executed during ¢} to tif and associated to a “sim-
ulation time”. For example, the ith simulation starts with the assimilation and
adaptive modeling based on observations Tj, then integrates the dynamic model
with data assimilation and adaptive modeling based on observations 71, etc., up
to the last observation period T} which corresponds to the nowcast. After Ty,
there are no new data available and the simulation enters the forecasting period
proper, up to the last prediction time Tgy,.
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Fig. 1. Forecasting timelines. Top row: “Observation” or “ocean” time 7" during which
measurements are made and the real phenomena occur. Middle row: “Forecaster” time
7% during which the k" forecasting procedure and tasks are started and finished.
Bottom row: “*® simulation” time ¢* which covers portions of the real “ocean” time
for each simulation. Multiple simulations are usually distributed on several computers,
including ensembles of forecasts for uncertainty predictions (ESSE).

Data-driven ocean applications involve measurement models which link the
measured variables to the model state variables. These measurement models can
be complex, e.g. for linking the measured acoustic travel times to the simulated
fields of zooplankton concentrations and temperature. In addition, many of the
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state variables are usually not observed and inferring the non-observed variables
by dynamical adjustment (e.g. [7]) prior to data assimilation is often crucial.
This reduces unphysical data shocks/adjustments that would otherwise occur
after assimilation. With a fully multivariate DA scheme such as ESSE, forecast
error covariances can infer the non-observed variables from the observed ones but
it usually remains helpful to impose weak-constraint dynamical adjustments.

3 Implementing adaptivity

We have been considering the following cases in our design thus far (Fig. 2):

1. running a single, adaptive interdisciplinary model,

2. running a single physical model, coupled to a set of competing biological
models whose parameters are adapted,

3. running competing interdisciplinary models and adapting their parameters.
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Fig. 2. Approaches for adaptive coupled physical-biogeochemical modeling

In all cases, the basis of the adaptation are the misfits between model esti-
mates and data. When misfits are large, models are adapted. In the latter two
cases, models can be rejected when seen as too inadequate. In the context of
ESSE, expected bounds on misfits are given by the forecast uncertainties. Im-
portantly, the computation of uncertainties for adaptive modeling can be based
on small-size ESSE ensembles, one for each candidate models. This is feasible
because error variances often converge faster than covariances. The adaptation
triggers are provided to the software through external files, regularly checked
at runtime and updated when data-forecast misfits warrant a specific model
structure/parameter modification.

For example, in the first case (Fig. 2, left), the code may modify the carbon-
to-chlorophyll ratio, increase the number of state variables (by adding meso-
zooplankton) or alter the form of a source term. The latter two structural adap-
tations are cleanly implemented by using C function pointers to choose between
Fortran modules. Physical and biological adaptation must be dynamically com-
patible but don’t need to be computationally concurrent. In the second case
(Fig. 2, right), the forecasts of competing biogeochemical models are compared
based on their respective data-forecast misfits and the best biological functional
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forms selected for each time period T; (Fig. 1). The third case is a combination
of the former two.

We are developing all three cases using a model of concurrent processes di-
rectly coupled (using MPI); we are considering the use of a more flexible coupling
framework [8] for the future. Several computational challenges involved in the
implementation of adaptivity for coupled physical-biological forecasts remain to
be researched. They include the optimum operational choice between cases (i)
to (iii), the impact of multiple observing and forecasting timelines, the interac-
tion between parameter and structural adaptivity, the details of the quantitative
schemes which trigger the adaptive switch/behavior, the relationships between
adaptivity and consistent model re-initializations and data assimilation, the dif-
ferent computational meshes, and finally, the issues of communications costs and
load imbalance in many-to-one scenarios.

4 Initial Progress and Prospectus

Three initial results are now presented. The first two are experiments which ex-
ercise the concept of adaptive modeling but do not yet utilize the whole dynamic
data-driven computational system. The last result summarizes the development
of a new adaptive biogeochemical computational model.

4.1 Biogeochemical adaptive modeling in Massachusetts Bay

The first example corresponds to dynamic data-driven predictions of coupled
physical and biological dynamics in Massachusetts Bay during June 2001, as
part of the Assessment of Skill for Coastal Ocean Transients (ASCOT-01) ex-
periment. The goals of ASCOT-01 were to enhance the efficiency and extend
the scope of nowcasting and forecasting of oceanic fields for Coastal Predictive
Skill Experiments and Rapid Environmental Assessments. The limited physical
dimensions of the Bay allowed a relatively comprehensive sampling and forecast-
ing of transient conditions. The focus was on coastal ocean responses to wind
events, including upwellings and subsequent advections of nutrients and organ-
isms. The predictions illustrated by Fig. 3 were carried-out with the Harvard
coupled models, initialization procedure and data assimilation schemes (see [7]).

Fig. 3. Adaptive biogeochemical modeling during ASCOT-01 in Mass. Bay, June 2001.
Two left panels: June 24 nowcast of surface Chl (mg/m?) and corresponding west-east
cross-section. Two right panels: June 27 forecast. All fields are after adaptation.
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In June (end of the Spring bloom), the ecosystem is usually in a different
state than it is in Aug-Sept (summer/summer-to-fall transition). For June 2001,
important state variables were the 4D fields of phytoplankton, zooplankton,
detritus, nitrate, ammonium and chlorophyll-a (e.g. Fig 4), as in Aug-Sept 1998
[7]. However, model parameters needed to be modified. The parameters whose
values where adapted to the June 2001 conditions included light attenuation
scales, photosynthetic parameters, nutrient uptake constants, phytoplankton and
zooplankton mortality rates, zooplankton grazing parameters, settling/sinking
velocities for phytoplankton/detritus, and re-mineralization timescales.

Once the experiment started, model parameters were adapted to the new
data collected, using the concept of DDDAS. The techniques utilized are illus-
trated on Fig 3 (right side, cases 2 and 3). Firstly, a set of physical-biological
predictions was executed with a single physical model but different biological
model parameters. The adaptive biological parameters were the: photosynthetic
parameters, half saturation constants for ammonium /nitrate uptakes, zooplank-
ton grazing parameters and zooplankton mortality rates. Each member of the set
of predictions was then compared to the new data collected. The biological pa-
rameters of the coupled prediction which was the closest to this new data (within
error bounds) were ultimately selected as the best parameters. This process was
repeated several times during the experiment. Secondly, the representation of
the Charles River outflow from Boston Harbor was adapted. This was necessary
because the real-time data likely indicated that the outflow was larger in June
2001 than in August 1998. The physical strength of the simulated nitrate out-
flow was therefore increased. A sample of the nowcast and forecast chlorophyll
concentration fields after adaptation are shown on Fig. 3. Note the effects of the
southwesterly winds during the June 23-27 evolution (advection of Chl plume
and increase in sub-surface maxima). Importantly, the adaptive modeling al-
lowed the 2-3 day forecast of the Chl field to be better than persistence (assume
oceanic conditions are constant) by about 5 to 20 percent.

4.2 Physical adaptive modeling in Monterey Bay

The second example corresponds to the Autonomous Ocean Sampling Network
(AOSN-II) field experiment in the Monterey Bay region. It utilized a plethora
of remote and in-situ sensors and platforms including multiple satellite images,
drifters, gliders, moorings, AUV and ship-based data (www.mbari.org/aosn).
These data were assimilated into numerical models and daily predictions of the
ocean fields and uncertainties were issued. The different sensors provided cor-
related, sometimes redundant, measurements of the environment. Another im-
portant component was the multiple predictive models. In addition, multiple
ESSE runs of the same model were carried-out, including stochastic forcings to
represent model uncertainties. These ensembles of ESSE simulations produced
plausible dynamical scenarios for the region.

Prior to the experiment, model parameters were calibrated to historical con-
ditions judged to be similar to the conditions expected in August 2003. Once
the experiment started, several parameters of the physical ocean model were
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Fig. 4. Adaptive physical modeling during AOSN-II in Monterey Bay, August 2003:
surface T on 16 Aug 2003. Left: before adaptation. Right: after adaptation.

adapted to the new 2003 data. This adaptation involved the parameterization
of the transfer of atmospheric fluxes to the upper-layers of the sea. As shown on
Fig. 4, the new values for wind mixing clearly modified surface properties and
improved the temperature fields and ocean currents (not shown).

4.3 Generalized Adaptive Biogeochemical Ocean Model

Oceanic states evolve and go through transitions. Efficient predictive models
must have the same behavior. This is especially important for marine ecosystems.
To automate the dynamic switch of biogeochemical parameters and structures,
a new generalized biogeochemical ocean model is being developed [9].
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Fig. 5. Generalized biogeochemical model. Thicker arrows imply more processes.

This generalized model is fully modular and flexible (Fig. 5). It has been sci-
entifically constructed based on a serious study of all possible functional groups
and parameterizations for coastal ecosystems such as Massachusetts Bay and
Monterey Bay (Sects. 4.1,4.2). A general set of state variables and of mathe-
matical structures representing their interactions was selected, based on impor-
tance, completeness, efficiency and accuracy. This led to a generalized model
(Fig. 5) with the following functional groups of state variables: nutrients (N;),
phytoplankton (F;), zooplankton (Z;), detritus (D;), dissolved organic matter
(DOM;), bacteria (B;) and auxiliary variables (A;). Within each functional
group, the number of state variables varies from 1 to n. The parameterizations of
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the interactions among state variables is also variable. Changes in their number
at each trophic level can result in automatic changes in these parameterizations.
With this flexibility, the generalized biogeochemical model can adapt to differ-
ent ecosystems, scientific objectives and available measurements. Details of its
properties and implementation are given in [9)].

5 Conclusion and Future Research

Adaptive modeling based on DDDAS will become essential for interdisciplinary
ocean predictions. The present manuscript provides a conceptual basis and illus-
trative examples for this adaptation. Opportunities and challenges in adaptive
ocean modeling abound over a wide spectrum of needs, from coastal ocean sci-
ence to global climate predictions. Adaptive ocean modeling must be anticipated
to accelerate progress in fundamental research and to enable rapid operational
predictions otherwise not possible.
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