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Interdisciplinary Ocean
Science Today

Research advances in interdisciplinary ocean science have led
to the emergence of new dynamical concepts

Non-linear interdisciplinary processes are now known to occur
on multiple interactive scales in space and time with bi-
directional feedbacks

Such processes importantly can be dominated by strong
sporadic events intermittent in both space and time.

Understanding specific non-linear dynamics of known events
and identification of important additional multi-scale
Interactive processes provides a framework for realistic
understanding of the interdisciplinary coastal ocean



System Concept

e A system approach which synthesizes theory, data and
numerical computations is essential for rapid and efficient
progress

e The concept of Ocean Observing and Prediction Systems for
field and parameter estimations has recently crystallized
with three major components

+ An observational network: a suite of platforms and sensors for
specific tasks

* A suite of interdisciplinary dynamical models
* Data management, analysis and assimilation schemes

« Systems are modular, based on distributed information
providing shareable, scalable, flexible and efficient workflow
and management



Systems to be Presented

« Rapid Real-Time Interdisciplinary Ocean Forecasting:
Adaptive Sampling and Adaptive Modeling in a Distributed
Environment; LOOPS/Poseidon; Harvard/MIT; N. Patrikalakis,
J. McCarthy, A. Robinson, H. Schmidt; NSF-ITR/ONR

» Assessment of Skill for Coastal Ocean Transients (ASCOT);
Predictive skill experiments; NRV Alliance and Harvard Ocean
Prediction System (HOPS); SACLANTCEN/Harvard; E.
Coelho, J. Sellschopp, A. Robinson; SACLANTCEN/ONR

« Uncertainties and Interdisciplinary Transfers Through the
End-To-End System (UNITES); Multi-institutional; P. Abbot
(OASIS), A. Robinson; ONR

o Autonomous Ocean Sampling Networks-11 (AOSN-I1); Multi-
Institutional; J. Bellingham (MBARI - Lead), A. Robinson
(Deputy-Lead); ONR



MODEL IMPROVEMENTS
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LOOPS/Poseidon 3””L
Ocean Forecasting in a Distributed Computing Environment

- Interdisciplinary research coupling Physical and Biological Oceanography with
Ocean Acoustics.

« More effective Real-Time Ocean Forecasting for Naval and Maritime Operations,
Pollution Control, Fisheries Management, etc.

« MIT OE (IT, Acoustics) and Harvard DEAS (Physical and Biological Oceanography).
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Distributed/Grid Computing and Ocean Forecasting

- Advanced Data Assimilation
methods require significant
computation and data storage
resources

- The inherent parallelism is ideal
for high throughput independent
computations

- Local (dedicated and shared)
and remote computers are used

- Remote data access can be
transparent to the user

- We are employing Grid
Computing technologies (Globus,
Sun Grid Engine, Condor) with a
web portal front end

- Various data grid storage
solutions with domain specific
support (DODS etc.)
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- Individual computational components are
serial (or parallel) platform-optimized
Fortran based (“legacy”) codes

- Support for data visualization using local
and remote resources

- Metadata repositories for locating relevant

data or software descriptions




Real-time Time-adaptive
Coupled Models
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Various Adaptive Physical and Biological models can be coupled in more than one way:

An (adaptive) physical model can drive multiple biological models when there is no way to
ascertain a priori which is best for a given case

An adaptive physical model and an adaptive biological model proceed in parallel,
independently adapting and driving each other

For performance reasons (tight coupling) both modes are being implemented using message
passing for parallel execution

Mixed language programming (using C function pointers and wrappers) for code adaptivity



Generalized Adaptable Biological Model
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Predictive Skill

Qualitative and quantitative evaluation of ocean
forecasts by generic and regional-specific skill criteria
and skill metrics is essential

Phase errors, structural errors and their sources need to
be identified and attributed

Prec

Ictive skill experiments for regional and generic

forecast systems require over-sampling for validation
and to determine minimal data requirements.

SACLANTCEN/Harvard: ASCOT-01, ASCOT-02/BP02



ASCOT-01: 6-26 June 2001
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ASCOT-02/BP02: 7-17 May 2002
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ASCOT-01 Real-Time Products
Massachusetts Bay Gulf of Maine
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ASCOT-01 Skill Metrics ASCOT-02/BP02
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MREAO03/BP03 — Mini-HOPS Modeling

One domain survey within an inertial period (app. 13 hours).

Small domains will be initialised from a regional HOPS run.

Inertial motion and sub-mesoscale features identified from the collected data
and assimilated into the small domains following a progressive pattern (from
west most domain to the east most domain) on a cycle basis.

The mini-HOPS will be producing short term forecasts (24-48 hours) with
hourly resolution.

Over-sampling will be carried out so redundancy exists to evaluate the accuracy
and persistency of the sub-mesoscale, short term forecasts.
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The End-to-End System
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Monte Carlo simulation example: transfer of ocean physical forecast
uncertainty to acoustic prediction uncertainty in a shelfbreak environment.
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ESSE assimilation results (Twin Experiment):
“True” TL (from which towed-receiver data are sub-sampled),

a priori TL (ensemble mean forecast),

a posteriori TL (after data assimilation) and

TL realization closest to a posteriori TL.



Var.—width (32Hz/224Hz) running-range avg. TL realiz. #1-4 (from 50 to 100 db)
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Uncertainty (error PDF) of variable—width (32Hz/224Hz) running—range avg. TL
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Determination of PPD (predictive
probability of detection) using SIRE-PDF

 Probabilistic representation of

_' " SIRE-PDF
- system performance
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o Used by UNITES to
characterize and transfer
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through end-to-end problems
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AOSN-II Modeling and Adaptive Sampling
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Upwelling State — 23-26 May 1989 — Relaxation State — 18 -22 June 1989 —
upwelled water from points moves California Current anti-cyclonic meander
equatorward and seaward — Point Ano Nuevo moves coastward

water crosses entrance to Monterey Bay

Rosenfeld et al., 1994



Summary and Conclusions

» Advanced systems for adaptive sampling and adaptive
modeling in a distributed computing environment

 Quantitative predictive skill measured by RMSE and
PCC achieved significantly in the dynamic upper ocean

* Environmental uncertainties transferred through
acoustic propagation and signal processing to sonar
performance

* Integrated ocean observing and prediction system for a
predictive skill experiment in Monterey Bay and the
California Current System in Summer 2003
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