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Ocean Prediction System Concept

 Interdisciplinary ocean science research underway on
coupled physical, biological, chemical, sedimentological,
acoustical, optical non-linear, multi-scale,
Interdisciplinary processes intermittent in space and time

e Ocean Observing and Prediction Systems for science and
operational applications have been initiated on basin,

regional and coastal scales and consist of three major
components

* An observational network: a suite of platforms and sensors for
specific tasks

* A suite of interdisciplinary dynamical models
* Data assimilation schemes



Interdisciplinary Data Assimilation

« Data assimilation can contribute
powerfully to understanding and modeling
physical-acoustical-biological processes
and is essential for ocean field prediction
and parameter estimation

 Model-model, data-data and data-model
compatibilities are essential and dedicated
Interdisciplinary research is needed
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Coupled Interdisciplinary Data Assimilation

X=X, X5 Xg]  Unified interdisciplinary state vector
Physics: x5 =T, S, U, V, W]
Biology: x5 =[N, P, Z, B;, D;, C}]

Acoustics: X, = [Pressure (p), Phase (¢)]

~ ~ Coupled error covariance
- _ oyt _ywt\T
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MODEL IMPROVEMENTS
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HOPS/ESSE System
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HOPS/ESSE Long-Term Research Goal

To develop, validate, and demonstrate an advanced

relocatable regiona

| ocean prediction system

for real-time ensemble forecasting and simulation of

Interdisciplinary multiscale oceanic fields and their

assoclated errors and uncertainties,

which incorporates both

autonomous ac

aptive modeling and

autonomous ada

ntive optimal sampling



Approach

To achieve regional field estimates as realistic and
valid as possible:

o every effort iIs made to acquire and assimilate both remotely
sensed and in situ synoptic multiscale data from a variety of
sensors and platforms in real time or for the simulation
period, and a combination of historical synoptic data and
feature models are used for system initialization

o “fine-tune” the model to the region, processes and
variabilities: examine model output, modify set-up (e.g. grids,
etc.) and alter structure and values of parameters (e.g. SGS,
boundary conditions, etc.)

 continuously evaluate and iterate tuning as necessary



Mini-HOPS

 Designed to locally solve the problem of accurate
representation of sub-mesoscale synopticity

* Involves rapid real-time assimilation of high-resolution data in
a high-resolution model domain nested in a regional model

* Produces locally more accurate oceanographic field estimates
and short-term forecasts and improves the impact of local field
high-resolution data assimilation

« Dynamically interpolated and extrapolated high-resolution
fields are assimilated through 2-way nesting into large domain
models

In collaboration with Dr. Emanuel Coelho (NATO Undersea Research Centre)



MREA-03 Mini-HOPS Protocol

» Regional Domain (1km) run at Harvard in a 2-way nested
configuration with a super-mini domain.
— Super mini has the same resolution (1/3 km) as the mini-HOPS
domains and is collocated with them

* From the super-mini domain,
Initial and boundary conditions
were extracted for all 3 mini-
HOPS domains for the following
day and transmitted to the NRV
Alliance.

« Aboard the NRV Alliance, the ?
mini-HOPS domains were run
the following day, with updated
atmospheric forcing and 26
assimilating new data.

MREA-03 Domains

IRl [ T

I

432[ 4+




Mini-HOPS for MREA-03

Prior to experiment, several configurations were tested leading to
selection of 2-way nesting with super-mini at Harvard

e During experiment:
— Daily runs of regional and super mini at Harvard
— Daily transmission of updated IC/BC fields for mini-HOPS

domains
— Mini-HOPS successfully run aboard NRV Alliance

Mini-HOPS simulation run
aboard NRV Alliance in Central
mini-HOPS domain (surface
temperature and velocity)
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Results of MREAO3 Re-analysis and Model Tuning

Re-analysis Model/Data Comparison
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Error Analyses and Optimal (Multi) Model Estimates
Maximum-Likelihood Correction of Real-Time Forecast
Training via Full Data Set

Channel Domain: 28 May — 14 Jun CTD; ALADIN+FNMOC (Jun14/PTHO8) 0
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Coupled Physical-Acoustical Data Assimilation

End-to-End System Concept
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PRIMER IIl Field Study July--August, 1996
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PRIMER End-to-End Problem
Initial Focus on Passive Sonar Problem

40° 20 1

40° 00

38" a0

38" 20

b

38" 00°

?1"20' ?i'IUCI' 70°40° 70200 70°00° 6040 68°20°

Location: Shelfbreak PRIMER
Region

Season: July-August 1996

Sonar System (Receiver): Passive
Towed Array

Target: Simulated UUV (with
variable source level)

Frequency Range: 100 to 500 Hz
Geometries: Receiver operating on
the shelf shallow water;

target operating on the shelf slope
(deeper water than receiver)
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Numerical tuning of ocean bathymetry and model levels for accurate acoustics
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Environmental-Acoustical Uncertainty Estimation and Transfers,
Coupled Acoustical-Physical DA and End-to-End Systems
In a Shelfbreak Environment
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Coupled Physical-Acoustical Data Assimilation of real TL-CTD data:
TL measurements affect TL and C everywhere.

Sound Speed Prediction Sound Speed after DA of daily mean TL at VLA Sound Speed correction
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Determination of PPD (Predictive Probability
Of Detection) using SNRE-PDF

Systems - based PDF (incorporates
environmental and system uncertainty)

- System Based
T 4 "F?redictive PDF

30

SNRE =
Signal-to-Noise Ratio
Environmentally Induced S

Range, km

Used by UNITES to characterize and transfer uncertainty
from environment through end-to-end problems



Predicted PDE of broadband TL After Assimilation PDF of broadband TL
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Coupled HOPS/ESSE/NPS Physics/Acoustics Assimilation

Oceans physics/acoustics data assimilation: carried-out as a single
multi-scale joint estimation for the first time

ESSE nonlinear coupled assimilation recovers fine-scale TL
structures and mesoscale ocean physics from real daily TL data
and CTD data

Shifts in the frontal shape (meander, etc.) leads to more/less in
acoustic waveguide (cold pool on the shelf)

Broadband TL uncertainties predicted to be range and depth
dependent

Coupled DA sharpens and homogenizes broadband PDFs



Latitude

Wind-Induced Upwelling
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Wind Vector in 2002 — MassBay Buoy 44013

2002 — Massachusetts Bay

2002 — Monterey Bay

Wind vector in June 2001 - NODC Buoy 44013

—10m's

June 2001 — Massachusetts Bay
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HORIZONTAL CIRCULATION PATTERNS IN MASSACHUSETTS BAY

42.6
Cartoon of horizontal circulation
patterns for stratified conditions in

42.4 :

. Massachusetts Bay, overlying
topography in meters (thin lines).

42.2  Patterns are not present at all

times
» Most common patterns (solid), less
common (dashed)
42
 Patterns drawn correspond to
main currents in the upper layers
of the pycnocline where the

41.8 buoyancy driven component of the
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Coastal upwelling system:
sustained upwelling — relaxation — re-establishment

Monterey Bay and California Current System August 2003
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ASCOT-01 (6-26 June 2001):
Positions of data collected and fed into models

ASCOT-01 and Related Data Through 24 June 2001
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ASCOT-01: Sample Real-Time Forecast Products
Massachusetts Bay Gulf of Maine

71 70 59 23

Min= 1.1450EH+0 Max— 1.03Y1E+0L Min= }.0MO0EHIQ Mar— 4.81596E+01

3200 Day Foreceat : 20 Jun 2H1 300 Day Foreceat : 20 Jun 2011

5m Chlorophyll 15m Nitrate




m)

Depth

Successive Tuning of Physical Parameters

(Green — prior parameters;
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Coupled Biological-Physical DA for Dynamics of Upwelling Event

4170 N 4185 N
Om  rhed T PROT T

202

1v.0

130

G km

Temperature — 22 June

o]

bhlorophyll — 22 June

P

FHOT T

Chlorophyll — 24 June

Patricia Moreno



Upwelling Event in Massachusetts Bay
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Upwelling Event in Massachusetts Bay

o Strong southerly winds lead to upwelling on the western side of
Cape Cod Bay

 Near the surface temperature decreases from 17°C to 12°C

 Near the surface chlorophyll increases from 1.4 mg Chl/m3to 2.3

e One-half day later, chlorophyll
— continues to increase near the surface
— decreases between 5-10m
» Between 3-10m there is maximum primary production
» Advective effects are stronger, bringing the newly produced
chlorophyll closer to the surface

 Primary production during the upwelling event is mainly due to
ammonium uptake
* Nitrate acts as a passive tracer
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Descriptive oceanography of re-analysis fields and and real-time error fields initiated at the mesoscale.

Description includes: Upwelling and relaxation stages and transitions, Cyclonic circulation in
Monterey Bay, Diurnal scales, Topography-induced small scales, etc.



Adaptive Sampling and Prediction (ASAP)
Monterey Bay 2006

225 1224 -1223 -1222 -122.
= (°H)

Longitud

: _ ASAP Glider tracks for Close-up view of
Modeling Domains nominal sampling nominal sampling

Adaptive sampling to:

e maintain nominal sampling array
e investigate special features

http://oceans.deas.harvard.edu/AOSN2/OSSE2005/Exp0001/



ASAP OSSE #1 — N Gliders per Track
OSSE Definition

« Ability of N gliders to quantitatively represent a simulated “true”
ocean with and without melding with dynamics

« Without dynamics: objectively analyze
I. OA of glider data once per day

o With dynamics: assimilate data once per day and compare
I. A priori estimate
Il. A posteriori estimate

Compare these estimates with once a day OA’s above

o OSSE fields for ASAP
I. Preliminary results from — 1.5km, free surface, no tides
Il. In preparation — 0.5km, free surface, tides



~Statistics of once/day OA of data
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Multi-Model Ensemble Estimates of Fields and Errors
Strategies For Multi-Model Adaptive Forecasting

e Error Analyses: Learn individual model forecast errors in an on-line fashion
through developed formalism of multi-model error parameter estimation

* Model Fusion: Combine models via Maximum-Likelihood based on the
current estimates of their forecast errors

3-steps strategy, using model-data misfits and error parameter estimation
1. Select forecast error covariance B and bias gt parameterization ox, a3

B~B(a); p=aB); @ = {a, 8}

2. Adaptively determine forecast error parameters from model-data misfits
based on the Maximum-Likelihood principle:

O = arg mgxp())\(")) Where Y = {y?,y9,...,y%} IS the observational data

3. Combine model forecasts x;via Maximum-Likelihood based on the current
estimates of error parameters (Bayesian Model Fusion) O. Logoutov

x" —argmmz mxm B_ m)(x Hme)



Error Subspaces and ESSE Tuning Prior to Assimilation

e ESSE 1st and 2nd dominant error subspaces on August 28, 2003 (AOSN2)
ESSE seeks a low-rank error covariance representation: B(&) = US(&)U?

New Approach: use error subspace singular values as tunable
parameters. The likelihood function for ESSE singular values:

T

log L(a|D) x (ax—awp) E_l(a—ag)+longiag S((’)\Z)—l—dT(B(Oi)—FR)ﬁld

ESSE: singular vector 1, August 28, 2003 Log-Likelihood function, 1st ESSE subspace, August 28, 2003

Log-Likelihood

288H =
287r g

0 2000 4000 6000 8000 10000

36°N

First (left) and second (right) dominant error subspaces Log-likelihcl(t)d function
(First and second columns of U) of the 1 ESSE

subspace singular value



Two Models and Data Combined via Bayesian Fusion

ROMS and HOPS individual SST forecasts and the NPS aircraft SST
data are combined based on their estimated uncertainties to form the
central forecast

ROMS, August 28, 2003 HOPS, August 28, 2003 Central HOPS/ROMS forecas t
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A new batch of model-data misfits and priors on uncertainty parameters
determine via the Bayesian principle uncertainty parameter values that
are employed to combine the forecasts.



Multi-Scale Energy and Vorticity Analysis

MS-EVA is a new methodology utilizing
multiple scale window decomposition

In space and time for the investigation
of processes which are:
e multi-scale interactive
* nonlinear

* intermittent in space
 episodic in time

Through exploring:

e pattern generation

e energy and enstrophy
transfers, transports,
and conversions

* perfect transfer fields

MS-EVA helps unravel the intricate relationships between events on different
scales and locations in phase and physical space. Dr. X. San Liang



Multi-Scale Energy and Vorticity Analysis
Multi-Scale Window Decomposition in AOSN-II Reanalysis
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Time windows = _ |
Large scale: > 8 days S L B
Meso-scale: 0.5-8 days

Sub-mesoscale: < 0.5 day
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Question: How does the large-scale flow lose
stability to generate the meso-scale structures?



Multi-Scale Energy and Vorticity Analysis
» Decomposition in space and time (wavelet-based) of energy/vorticity eqns.
Large-scale Available Potential Energy (APE)

F-.FEL (ALK 11, |2vmZ) AF EL (ALKG 15, lev=Z) AF EL(F-.LIEI 18, [evmd) .F-.FEL (ALKGE 27, |evmz)

20 40 &0 2O

F.EL (ALKE 15, l2v=2)

Large-scale Kinetic Energy (KE)
» Both APE and KE decrease during the relaxation period
e Transfer from large-scale window to mesoscale window occurs to account for
decrease in large-scale energies (as confirmed by transfer and mesoscale terms)

Windows: Large-scale (>= 8days; > 30km), mesoscale (0.5-8 days), and sub-mesoscale (< 0.5 days)
Dr. X. San Liang
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Multi-Scale Energy and Vorticity Analysis
MS-EVA Analysis: 11-27 August 2003

Transfer of APE from
large-scale to meso-scale
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Transfer of KE from

large-scale to meso-scale
BT (LEV=2)
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Multi-Scale Energy and Vorticity Analysis
(b)

MESOSCALE WINDOW £—=—

A

= 4
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LARGE-SCALE WINDO =

Two distinct centers of instability: both of mixed type but different in cause.
Center west of Pt. Sur: winds destabilize the ocean directly during
upwelling.

Center near the Bay: winds enter the balance on the large-scale window and
release energy to the mesoscale window during relaxation.

Monterey Bay Is source region of perturbation and when the wind is relaxed,
the generated mesoscale structures propagate northward along the coastline
In a surface-intensified free mode of coastal trapped waves.




CONCLUSIONS

* Entering a new era of fully interdisciplinary ocean
science: physical-biological-acoustical-
biogeochemical

* Advanced ocean prediction systems for science,
operations and management: interdisciplinary, multi-
scale, multi-model ensembles

o Interdisciplinary estimation of state variables and

error fields via multivariate physical-biological-
acoustical data assimilation

http://www.deas.harvard.edu/~robinson
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