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Interdisciplinary Ocean Science Today

• Research underway on coupled physical, biological, 
chemical, sedimentological, acoustical, optical 
processes

• Ocean prediction for science and operational 
applications has now been initiated on basin and 
regional scales

• Interdisciplinary processes are now known to occur 
on multiple interactive scales in space and time with 
bi-directional feedbacks



System Concept

• The concept of Ocean Observing and Prediction 
Systems for field and parameter estimations has 
recently crystallized with three major components
∗ An observational network: a suite of platforms and 

sensors for specific tasks
∗ A suite of interdisciplinary dynamical models
∗ Data assimilation schemes

• Systems are modular, based on distributed 
information providing shareable, scalable, flexible 
and efficient workflow and management



Interdisciplinary Data Assimilation

• Data assimilation can contribute 
powerfully to understanding and modeling 
physical-acoustical-biological processes 
and is essential for ocean field prediction 
and parameter estimation

• Model-model, data-data and data-model 
compatibilities are essential and dedicated 
interdisciplinary research is needed



Physics - Density

Biology –
Fluorescence 
(Phytoplankton)

Acoustics –
Backscatter 
(Zooplankton)

Almeira-Oran front in Mediterranean Sea
Fielding et al, JMS, 2001

Griffiths et al,
Vol 12, THE SEA

Interdisciplinary Processes - Biological-Physical-Acoustical Interactions



• Distribution of zooplankton is influenced by both animal behavior 
(diel vertical migration) and the physical environment. 

• Fluorescence coincident with subducted surface waters indicates 
that phytoplankton were drawn down and along isopycnals, by 
cross-front ageostrophic motion, to depths of 200 m.

• Sound-scattering layers (SSL) show a layer of zooplankton 
coincident with the drawn-down phytoplankton. Layer persists 
during and despite diel vertical migration. 

• Periodic vertical velocities of ~20 m/day, associated with the 
propagation of wave-like meanders along the front, have a 
significant effect on the vertical distribution of zooplankton across 
the front despite their ability to migrate at greater speeds.

Biological-Physical-Acoustical Interactions



PAA PAO PAB

P =   POA POO POB

PBA PBO PBB

Coupled Interdisciplinary Data Assimilation

Physics:  xO = [T, S, U, V, W]

Biology:  xB = [Ni, Pi, Zi, Bi, Di, Ci]

Acoustics:  xA = [Pressure (p), Phase (ϕ)]

x = [xA xO xB]

P = ε {(x – x t ) ( x – x t )T}ˆ ˆ Coupled error covariance
with off-diagonal terms

Unified interdisciplinary state vector



Data Assimilation 
in Advanced Ocean 
Prediction Systems



HOPS/ESSE System
Harvard Ocean Prediction System - HOPS



• Uncertainty forecasts (with dynamic error subspace, error learning)
• Ensemble-based (with nonlinear and stochastic primitive eq. model (HOPS)
• Multivariate, non-homogeneous and non-isotropic Data Assimilation (DA)
• Consistent DA and adaptive sampling schemes

HOPS/ESSE System
Error Subspace Statistical Estimation - ESSE



HOPS/ESSE Long-Term Research Goal

To develop, validate, and demonstrate an advanced 
relocatable regional ocean prediction system 
for the real-time ensemble forecasting and 

simulation of interdisciplinary multiscale oceanic 
fields and their associated errors and uncertainties, 

which incorporates both 
autonomous adaptive modeling and 

autonomous adaptive optimal sampling



Approach
To achieve regional field estimates as realistic and 

valid as possible, an effort is made to acquire and 
assimilate both remotely sensed and in situ synoptic 

multiscale data from a variety of sensors and 
platforms in real time or for the simulation period, 
and a combination of historical synoptic data and 
feature models are used for system initialization.



Ongoing Research Objectives
To extend the HOPS-ESSE assimilation, real-time 

forecast and simulation capabilities to a single 
interdisciplinary state vector of ocean physical-

acoustical-biological fields.

To continue to develop and to demonstrate the 
capability of multiscale simulations and forecasts

for shorter space and time scales via multiple 
space-time nests (Mini-HOPS), and for longer 
scales via the nesting of HOPS into other basin 

scale models.

To achieve a multi-model ensemble forecast
capability.



Examples Illustrating Research Issues

Gulf Stream
Coupled physical-biological dynamics studied via compatible 

physical-biological data assimilation
Combined feature model and in situ data assimilation in western 

boundary current

Ligurian Sea and Portuguese Coast
Multi-scale real-time forecasting in two-way nested domains –

Mini-HOPS: faster time scales, shorter space scales, sub-
mesoscale synopticity

New England Shelfbreak Front
End-to-End system concept with uncertainties, e.g. sonar system
Coupled physical-acoustical data assimilation with coupled error 

covariances



Gulf Stream Brazil Current



Feature Model







Day 7 Day 10

Temperature

Phytoplankton
Physical Assim.

Phytoplankton
Coupled Assim.



• Physical data assimilation only – adjustment of the physical fields leads to 
misalignment between physical and biological fronts, causing spurious cross-frontal 
fluxes and consequently spurious biological responses (e.g. enhanced productivity). 

• Biological data assimilation only – little or no feedback to the physics. Physical and 
biological fronts become misaligned, causing spurious cross-frontal fluxes and 
consequently spurious biological responses (e.g. enhanced productivity).

• Six-step method:
a) initial estimation of synoptic physical features
b) melding physical data into these fields to obtain the best real-time estimates
c) physical dynamical adjustment to generate vertical velocities
d) initial estimation of mesoscale biological fields based on Physical-biological correlations
e) melding biological data into these fields, and 
f) biological dynamical adjustment with frozen physical fields to balance the biological 

fields with each other, the model parameters, and the 3-D physical transports.

• The generation of these fields is done in “adjustment space”, outside of the 
simulation of interest (“simulation space”).

Conclusions – Compatible Physical/Biological Assimilation



• Vertical velocities associated with Gulf Stream meanders enhance new production 
at the front. Meandering not the primary cause of phytoplankton maxima. 

• Ring-stream interactions cause high vertical velocities, which combine with 
horizontal velocities to laterally detrain water from the Gulf Stream. Surface 
phytoplankton patches in meander trough recirculation gyres due to detrainment 
of nutrients and plankton from the Gulf Stream by Ring-stream interactions.

• Winds affect biological tracers in two ways:
a) influence on mixed-layer depth and the vertical entrainment/detrainment of nutrients 

and plankton 
b) driving of surface convergence or divergence and therefore vertical advection

• Wind events generally short-lived and do not override vertical velocities due to 
meandering. Simulations show no significant biological enhancement at the Gulf 
Stream front due to winds.

• Realistic high-resolution 4-D dynamical field estimates, brought into close 
correlation with observations by data assimilation, are generally necessary to 
identify the essential physical-biological interactions that explain the data.

Conclusions – Coupled Dynamical Processes



Mini-HOPS

• Designed to locally solve the problem of accurate 
representation of sub-mesoscale synopticity

• Involves rapid real-time assimilation of high-resolution data in 
a high-resolution model domain nested in a regional model

• Produces locally more accurate oceanographic field estimates 
and short-term forecasts and improves the impact of local field 
high-resolution data assimilation

• Dynamically interpolated and extrapolated high-resolution 
fields are assimilated through 2-way nesting into large domain 
models 

In collaboration with Dr. Emanuel Coelho (NATO Undersea Research Centre)



MREA-03 Mini-HOPS Protocol

• From the super-mini domain, 
initial and boundary conditions 
were extracted for all 3 mini-
HOPS domains for the following 
day and transmitted to the NRV 
Alliance.

• Aboard the NRV Alliance, the 
mini-HOPS domains were run 
the following day, with updated 
atmospheric forcing and 
assimilating new data.

MREA-03 Domains

• Regional Domain (1km) run at Harvard in a 2-way nested 
configuration with a super-mini domain.

– Super mini has the same resolution (1/3 km) as the mini-HOPS 
domains and is collocated with them



Mini-HOPS for MREA-03

• During experiment:
– Daily runs of regional and super mini at Harvard
– Daily transmission of updated IC/BC fields for mini-HOPS 

domains
– Mini-HOPS successfully run aboard NRV Alliance

Prior to experiment, several configurations were tested leading to 
selection of 2-way nesting with super-mini at Harvard

Mini-HOPS simulation run 
aboard NRV Alliance in Central 
mini-HOPS domain (surface 
temperature and velocity)



Mini-HOPS for MREA-04
• Portuguese Hydrographic Office utilizing regional HOPS
• Daily runs of regional and super mini at Harvard
• Daily transmission of updated IC/BC fields for mini-HOPS domains to 

NURC scientists for mini-HOPS runs aboard NRV Alliance

Regional Domain
1km resolution

Super Mini Domain
1/3 km resolution



End-to-End System Concept

• Sonar performance prediction requires end-to-end scientific 
systems: ocean physics, bottom geophysics, geo-acoustics, 
underwater acoustics, sonar systems and signal processing  

• Uncertainties inherent in measurements, models, transfer of 
uncertainties among linked components

• Resultant uncertainty in sonar performance prediction itself

• Specific applications require the consideration of a variety of 
specific end-to-end systems

Coupled Physical-Acoustical Data Assimilation





PAA PAO

POA POO

Physics:  xO = [T, S, U, V, W]

Acoustics:  xA = [Pressure (p), Phase (ϕ)]

x = [xA xO]
cO

P = ε {(x – x t ) ( x – x t )T}ˆ ˆ

Coupled discrete state vector x (from continuous φi)

Coupled error covariance

Coupled assimilation

x+ = x- + PHT [HPHT+R]-1 (y-Hx-); 

P =

x- = A priori estimate (for forecast) 
x+ = A posteriori estimate (after assimilation)



Real-Time Initialization of the 
Dominant Error Covariance Decomposition

• Real-time Assumptions
• Dominant uncertainties are missing or uncertain variability in initial 
state, e.g., smaller mesoscale variability

• Issues
• Some state variables are not observed
• Uncertain variability is multiscale

• Approach: Multi-variate, 3D, Multi-scale
• “Observed” portions

• Directly specified and eigendecomposed from differences 
between the intial state and data, and/or from a statistical model fit 
to these differences

• “Non-observed” portions
• Keep “observed” portions fixed and compute “non-
observed”portions from ensemble of numerical (stochastic) 
dynamical simulations



PRIMER End-to-End Problem
Initial Focus on Passive Sonar Problem

Location: Shelfbreak PRIMER 
Region
Season: July-August 1996
Sonar System (Receiver): Passive 
Towed Array
Target: Simulated UUV (with 
variable source level)
Frequency Range: 100 to 500 Hz
Geometries: Receiver operating on 
the shelf shallow water;
target operating on the shelf slope 
(deeper water than receiver)



Environmental-Acoustical Uncertainty Estimation and Transfers,
Coupled Acoustical-Physical DA and End-to-End Systems

in a Shelfbreak Environment

Note the 
front

Variability 
at the front

Extreme 
events

Warm/cold 
events on 
each side



• Novel approach: coupled physical-acoustical data assimilation 
method is used in TL estimation

• Methodology:
– HOPS generates ocean physics predictions
– NPS model generates ocean acoustics predictions
– 100 member ESSE ensemble generates coupled covariances
– Coupled ESSE assimilation of CTD and TL measurements

Starting with physical environmental data, compute the 
Predictive Probability Of Detection (PPD) from first 

principals via broadband Transmission Loss (TL)



Shelfbreak-PRIMER Acoustic paths considered, overlaid on bathymetry.
Path 1: 

• Source: at 300m, 400 Hz
• Receiver: VLA at about 40 km range, from 0-80m depths



Coupled Physical-Acoustical Data Assimilation of real TL-CTD data:
First Eigenmode of coupled normalized error covariance on Jul 26

Sound-speed
Component

Broadband TL
Component

Shift in frontal shape 
(e.g. meander) 

and

its acoustic TL 
counterpart above 
the source and in the 
cold channel on the 
shelf



Coupled Physical-Acoustical Data Assimilation of real TL-CTD data:
TL measurements affect TL and C everywhere.

Source

Receivers
(VLA)



Determination of PPD (Predictive Probability
Of Detection) using SNRE-PDF

Systems - based PDF (incorporates 
environmental and system uncertainty)

Used by UNITES to characterize and transfer uncertainty 
from environment through end-to-end problems

SNRE = 
Signal-to-Noise Ratio 
Environmentally Induced



Predicted 
PDF of 

broadband 
TL 



After 
Assimilation 

PDF of 
broadband 

TL 



• Oceans physics/acoustics data assimilation: carried-out as a single 
multi-scale joint estimation for the first time

• ESSE nonlinear coupled assimilation recovers fine-scale TL 
structures and mesoscale ocean physics from real daily TL data 
and CTD data

• Shifts in the frontal shape (meander, etc.) leads to more/less in 
acoustic waveguide (cold pool on the shelf)

• Broadband TL uncertainties predicted to be range and depth 
dependent

• Coupled DA sharpens and homogenizes broadband PDFs

Coupled HOPS/ESSE/NPS Physics/Acoustics Assimilation



Integrated Ocean Observing  
and Prediction Systems

Platforms, sensors and 
integrative models: HOPS-
ROMS real-time
forecasting and re-analyses

AOSN II



Coastal upwelling system:
sustained upwelling – relaxation – re-establishment 

M1 Winds

Temperature at 10m

Temperature at 150m

Monterey Bay and California Current System August 2003



6 Aug

HOPS AOSN-II Re-Analysis

30m Temperature: 6 August – 3 September (4 day intervals)

Descriptive oceanography of re-analysis fields and and real-time error fields initiated at the mesoscale. 

Description includes: Upwelling and relaxation stages and transitions, Cyclonic circulation in 
Monterey Bay, Diurnal scales, Topography-induced small scales, etc. 

10 Aug 14 Aug 18 Aug

22 Aug 26 Aug 30 Aug 3 Sep



HOPS AOSN-II Re-Analysis

Ano Nuevo

Monterey
Bay

Point Sur

18 August 22 August



Adaptive sampling via ESSE

Metric or Cost function: e.g. Find future Hi and Ri such that 

dt
t

t
tPtrMinortPtrMin

f

RiHi
f

RiHi ∫
0

,,
))(())((

Dynamics: dx =M(x)dt+ dη η ~ N(0, Q)
Measurement: y = H(x) + ε ε ~ N(0, R)

Non-lin. Err. Cov.:

• Objective: Minimize predicted trace of full error covariance (T,S,U,V error std Dev). 
• Scales: Strategic/Experiment (not tactical yet). Day to week.
• Assumptions: Small number of pre-selected tracks/regions (based on quick look on error 

forecast and constrained by operation)
• Problem solved: e.g. Compute today, the tracks/regions to sample tomorrow, that will most 

reduce uncertainties the day after tomorrow.
- Predicted objective field changes during computation and is affected by data to-be-collected
- Model errors Q can account for coverage term

QTxxxMxMTxMxMxxdtdP +>−−<+>−−=< )ˆ)(ˆ()(())ˆ()()(ˆ(/



Which sampling on Aug 26 optimally reduces uncertainties on Aug 27?

4 candidate tracks, overlaid on surface T fct for Aug 26

ESSE fcts after DA 
of each track

Aug 24 Aug 26 Aug 27

2-day ESSE fct

ESSE for Track 4

ESSE for Track 3

ESSE for Track 2

ESSE for Track 1DA 1

DA 2

DA 3

DA 4

IC(nowcast) DA

Best predicted relative error reduction: track 1

• Based on nonlinear error covariance evolution 
• For every choice of adaptive strategy, an 

ensemble is computed



Strategies For Multi-Model Adaptive Forecasting
Error Analyses and Optimal (Multi) Model Estimates

• Error Analyses: Learn individual model forecast errors in an on-line fashion 
through developed formalism of multi-model error parameter estimation

• Model Fusion: Combine models via Maximum-Likelihood based on the 
current estimates of their forecast errors

3-steps strategy, using model-data misfits and error parameter estimation

1. Select forecast error covariance       and bias       parameterization 

2. Adaptively determine forecast error parameters from model-data misfits
based on the Maximum-Likelihood principle:

3. Combine model forecasts      via Maximum-Likelihood based on the current 
estimates of error parameters   (Bayesian Model Fusion)         O. Logoutov

Where                                  is the observational data



Forecast Error Parameterization

Limited validation data motivates use of few free parameters

• Approximate forecast error covariances and biases as some 
parametric family, e.g. isotropic covariance model:

– Choice of covariance and bias models                  should be sensible and 
efficient in terms of                     and storage
∗ functional forms (positive semi-definite), e.g. isotropic

• facilitates use of Recursive Filters and Toeplitz inversion
∗ feature model based

• sensible with few parameters. Needs more research.
∗ based on dominant error subspaces

• needs ensemble suite, complex implementation-wise

Error Analyses and Optimal (Multi) Model Estimates



Error Parameter Tuning

Learn error parameters in an on-line fashion from model-data misfits 
based on Maximum-Likelihood

• We estimate error parameters via Maximum-Likelihood by solving 
the problem:

(1)

Where                                  is the observational data,                   are 
the forecast error covariance parameters of the M models

• (1) implies finding parameter values that maximize the probability 
of observing the data that was, in fact, observed

• By employing the Expectation-Maximization methodology, we 
solve (1) relatively efficiently

Error Analyses and Optimal (Multi) Model Estimates



Error Analyses and Optimal (Multi) Model Estimates
An Example of Log-Likelihood functions for error 

parameters

Length
Scale

Variance

HOPS

HOPS

ROMS

ROMS



Error Analyses and Optimal (Multi) Model Estimates
Two-Model Forecasting Example

Combined SST 
forecast

Left – with a priori
error parameters
Right – with 
Maximum-
Likelihood error 
parameters

HOPS and ROMS 
SST forecast

Left – HOPS
(re-analysis)

Right – ROMS
(re-analysis)

combine based on relative 
model uncertainties

Model Fusion



Physical
Model

Biological
Model

Biological
Model

Biological
Model

...[communicates to]

...

Physical
Model

Biological
Model

[communicates with]

(current)(current)

time

Physical
Model

Biological
Model

Physical
Model

Biological
 Model

(1)(2)

(1)

(1)

(2) (3)

(2) (3)

. . .

. . .

(Nbio)

(Nphy)

Physical
Model

Biological
 Model

(3)(2)

(current models )

(current models )

Towards Real-time Adaptive Physical and Coupled Models

• Model selection based on quantitative dynamical/statistical study of data-model misfits

• Mixed language programming (C function pointers and wrappers for functional choices) to be 
used for numerical implementation

• Different Types of Adaptation:
• Physical model with multiple parameterizations in parallel (hypothesis testing) 
• Physical model with a single adaptive parameterization (adaptive physical evolution)

• Adaptive physical model drives multiple biological models (biology hypothesis testing)
• Adaptive physical model and adaptive biological model proceed in parallel



Harvard Generalized Adaptable Biological Model

(R.C. Tian, P.F.J. Lermusiaux, J.J. McCarthy and A.R. Robinson, HU, 2004)



A Priori Biological Model for Monterey Bay

Another configuration with PO4 and Si(OH)4



Nitrate 
(umoles/l)

Chl 
(mg/m3)

Chl of 
Total P (mg/m3)

Chl of 
Large P

A priori configuration of generalized model on Aug 11 during an upwelling event

Towards automated quantitative model aggregation and simplification

Simple NPZ configuration of generalized model on Aug 11 during same upwelling event

Chl of 
Small P

Zoo 
(umoles/l)

Dr. Rucheng Tian



Multi-Scale Energy and Vorticity Analysis



Multi-Scale Energy and Vorticity Analysis
MS-EVA is a new methodology utilizing 
multiple scale window decomposition
in space and time for the investigation 
of processes which are:
• multi-scale interactive
• nonlinear
• intermittent in space
• episodic in time

Through exploring:
• pattern generation and 
• energy and enstrophy

- transfers
- transports, and
- conversions

MS-EVA helps unravel the intricate relationships between events on different 
scales and locations in phase and physical space. Dr. X. San Liang



Multi-Scale Energy and Vorticity Analysis
Window-Window Interactions:

MS-EVA-based Localized Instability Theory
Perfect transfer:
A process that exchanges energy among distinct scale windows which does not 
create nor destroy energy as a whole.
In the MS-EVA framework, the perfect transfers are represented as field-like 
variables.  They are of particular use for real ocean processes which in nature are 
non-linear and intermittent in space and time.

Localized instability theory:
BC: Total perfect transfer of APE from large-scale window to meso-scale window.
BT: Total perfect transfer of KE from large-scale window to meso-scale window.
BT + BC > 0 => system locally unstable; otherwise stable
If BT + BC > 0, and
• BC ≤ 0 => barotropic instability;
• BT ≤ 0 => baroclinic instability;
• BT > 0 and BC > 0 => mixed instability



Wavelet Spectra

Surface Temperature

Surface Velocity

Monterey Bay

Pt. AN

Pt. Sur



Multi-Scale Energy and Vorticity Analysis
Multi-Scale Window Decomposition in AOSN-II Reanalysis

Time windows
Large scale: > 8 days
Meso-scale: 0.5-8 days
Sub-mesoscale: < 0.5 day

The reconstructed large-
scale and meso-scale 
fields are filtered in the 
horizontal with features 
< 5km removed.

Question: How does the large-scale flow lose 
stability to generate the meso-scale structures?



• Both APE and KE decrease during the relaxation period
• Transfer from large-scale window to mesoscale window occurs to account for 

decrease in large-scale energies (as confirmed by transfer and mesoscale terms)

Large-scale Available Potential Energy (APE)

Large-scale Kinetic Energy (KE)

Windows: Large-scale (>= 8days; > 30km), mesoscale (0.5-8 days), and sub-mesoscale (< 0.5 days)
Dr. X. San Liang

• Decomposition in space and time (wavelet-based) of energy/vorticity eqns.
Multi-Scale Energy and Vorticity Analysis



Multi-Scale Energy and Vorticity Analysis
MS-EVA Analysis: 11-27 August 2003

Transfer of APE from
large-scale to meso-scale

Transfer of KE from
large-scale to meso-scale



Multi-Scale Energy and Vorticity Analysis
Process Schematic



Multi-Scale Energy and Vorticity Analysis
Multi-Scale Dynamics

• Two distinct centers of instability: both of mixed type but different in cause.
• Center west of Pt. Sur: winds destabilize the ocean directly during 

upwelling.
• Center near the Bay: winds enter the balance on the large-scale window and 

release energy to the mesoscale window during relaxation.
• Monterey Bay is source region of perturbation and when the wind is relaxed, 

the generated mesoscale structures propagate northward along the coastline 
in a surface-intensified free mode of coastal trapped waves.

• Sub-mesoscale processes and their role in the overall large, mesoscale, sub-
mesoscale dynamics are under study.

Energy transfer from 
meso-scale window to 
sub-mesoscale window.



• Entering a new era of fully interdisciplinary ocean 
science: physical-biological-acoustical-
biogeochemical

• Advanced ocean prediction systems for science, 
operations and management: interdisciplinary, multi-
scale, multi-model ensembles

• Interdisciplinary estimation of state variables and 
error fields via multivariate physical-biological-
acoustical data assimilation

CONCLUSIONS

http://www.deas.harvard.edu/~robinson
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