Ocean Prediction Systems: Advanced Concepts and Research Issues

Allan R. Robinson

Harvard University

Division of Engineering and Applied Sciences Department of Earth and Planetary Sciences

- System Concepts
- Research Issue Examples
- Demonstration of Concept Multi-Institutional Experiment off California Coast (AOSN-II)

Harvard University

Patrick J. Haley, Jr.Pierre F.J. LermusiauxWayne G. LeslieX. San LiangOleg LogoutovRucheng TianChing S. Chiu (NPS)Larry Anderson (WHOI)Avijit Gangopadhyay (Umass.-Dartmouth)

Interdisciplinary Ocean Science Today

- Research underway on coupled physical, biological, chemical, sedimentological, acoustical, optical processes
- Ocean prediction for science and operational applications has now been initiated on basin and regional scales
- Interdisciplinary processes are now known to occur on multiple interactive scales in space and time with bi-directional feedbacks

System Concept

- The concept of Ocean Observing and Prediction Systems for field and parameter estimations has recently crystallized with three major components
 - * An observational network: a suite of platforms and sensors for specific tasks
 - * A suite of interdisciplinary dynamical models
 - ***** Data assimilation schemes
- Systems are modular, based on distributed information providing shareable, scalable, flexible and efficient workflow and management

• Data assimilation can contribute powerfully to understanding and modeling physical-acoustical-biological processes and is essential for ocean field prediction and parameter estimation

• Model-model, data-data and data-model compatibilities are essential and dedicated interdisciplinary research is needed

Interdisciplinary Processes - Biological-Physical-Acoustical Interactions

Physics - Density

Almeira-Oran front in Mediterranean Sea Fielding *et al*, JMS, 2001

Acoustic backscatte (dB) Griffiths *et al*, Vol 12, THE SEA

Biological-Physical-Acoustical Interactions

- Distribution of zooplankton is influenced by both animal behavior (diel vertical migration) and the physical environment.
- Fluorescence coincident with subducted surface waters indicates that phytoplankton were drawn down and along isopycnals, by cross-front ageostrophic motion, to depths of 200 m.
- Sound-scattering layers (SSL) show a layer of zooplankton coincident with the drawn-down phytoplankton. Layer persists during and despite diel vertical migration.
- Periodic vertical velocities of ~20 m/day, associated with the propagation of wave-like meanders along the front, have a significant effect on the vertical distribution of zooplankton across the front despite their ability to migrate at greater speeds.

Coupled Interdisciplinary Data Assimilation

 $\boldsymbol{x} = [\boldsymbol{x}_{A} \ \boldsymbol{x}_{O} \ \boldsymbol{x}_{B}] \quad \textbf{Unified interdisciplinary state vector}$ $Physics: \ \boldsymbol{x}_{O} = [T, S, U, V, W]$ $Biology: \ \boldsymbol{x}_{B} = [N_{i}, P_{i}, Z_{i}, B_{i}, D_{i}, C_{i}]$ $Acoustics: \ \boldsymbol{x}_{A} = [Pressure (p), Phase (\phi)]$

$$\boldsymbol{P} = \varepsilon \left\{ (\hat{\boldsymbol{x}} - \boldsymbol{x}^{t}) (\hat{\boldsymbol{x}} - \boldsymbol{x}^{t})^{T} \right\}$$

Coupled error covariance with off-diagonal terms

$$\boldsymbol{P} = \begin{bmatrix} P_{AA} & P_{AO} & P_{AB} \\ P_{OA} & P_{OO} & P_{OB} \\ P_{BA} & P_{BO} & P_{BB} \end{bmatrix}$$

HOPS/ESSE System Harvard Ocean Prediction System - HOPS

HOPS/ESSE System Error Subspace Statistical Estimation - ESSE

- Uncertainty forecasts (with dynamic error subspace, error learning)
- Ensemble-based (with nonlinear and stochastic primitive eq. model (HOPS)
- Multivariate, non-homogeneous and non-isotropic Data Assimilation (DA)
- Consistent DA and adaptive sampling schemes

HOPS/ESSE Long-Term Research Goal

To develop, validate, and demonstrate an advanced relocatable regional ocean prediction system for the real-time ensemble forecasting and simulation of interdisciplinary multiscale oceanic fields and their associated errors and uncertainties, which incorporates both autonomous adaptive modeling and autonomous adaptive optimal sampling

Approach

To achieve regional field estimates as realistic and valid as possible, an effort is made to acquire and assimilate both remotely sensed and *in situ* synoptic multiscale data from a variety of sensors and platforms in real time or for the simulation period, and a combination of historical synoptic data and feature models are used for system initialization. Ongoing Research Objectives To extend the HOPS-ESSE assimilation, real-time forecast and simulation capabilities to a single interdisciplinary state vector of ocean physicalacoustical-biological fields.

To continue to develop and to demonstrate the capability of multiscale simulations and forecasts for shorter space and time scales via multiple space-time nests (Mini-HOPS), and for longer scales via the nesting of HOPS into other basin scale models.

To achieve a multi-model ensemble forecast capability.

Examples Illustrating Research Issues

Gulf Stream

Coupled physical-biological dynamics studied via compatible physical-biological data assimilation Combined feature model and *in situ* data assimilation in western boundary current

Ligurian Sea and Portuguese Coast

Multi-scale real-time forecasting in two-way nested domains – Mini-HOPS: faster time scales, shorter space scales, submesoscale synopticity

New England Shelfbreak Front

End-to-End system concept with uncertainties, e.g. sonar system Coupled physical-acoustical data assimilation with coupled error covariances

Gulf Stream

Brazil Current

Naval Research Laboratory MODAS 2.1

Day 10

Day 7

Temperature

Phytoplankton Physical Assim.

Phytoplankton Coupled Assim.

Conclusions – Compatible Physical/Biological Assimilation

- Physical data assimilation only adjustment of the physical fields leads to misalignment between physical and biological fronts, causing spurious cross-frontal fluxes and consequently spurious biological responses (e.g. enhanced productivity).
- Biological data assimilation only little or no feedback to the physics. Physical and biological fronts become misaligned, causing spurious cross-frontal fluxes and consequently spurious biological responses (e.g. enhanced productivity).
- Six-step method:
 - a) initial estimation of synoptic physical features
 - b) melding physical data into these fields to obtain the best real-time estimates
 - c) physical dynamical adjustment to generate vertical velocities
 - d) initial estimation of mesoscale biological fields based on Physical-biological correlations
 - e) melding biological data into these fields, and
 - f) biological dynamical adjustment with frozen physical fields to balance the biological fields with each other, the model parameters, and the 3-D physical transports.
- The generation of these fields is done in "adjustment space", outside of the simulation of interest ("simulation space").

Mini-HOPS

- Designed to locally solve the problem of accurate representation of sub-mesoscale synopticity
- Involves rapid real-time assimilation of high-resolution data in a high-resolution model domain nested in a regional model
- Produces locally more accurate oceanographic field estimates and short-term forecasts and improves the impact of local field high-resolution data assimilation
- Dynamically interpolated and extrapolated high-resolution fields are assimilated through 2-way nesting into large domain models

In collaboration with Dr. Emanuel Coelho (NATO Undersea Research Centre)

MREA-03 Mini-HOPS Protocol

- Regional Domain (1km) run at Harvard in a 2-way nested configuration with a super-mini domain.
 - Super mini has the same resolution (1/3 km) as the mini-HOPS domains and is collocated with them
- From the super-mini domain, initial and boundary conditions were extracted for all 3 mini-HOPS domains for the following day and transmitted to the NRV Alliance.
- Aboard the NRV Alliance, the mini-HOPS domains were run the following day, with updated atmospheric forcing and assimilating new data.

MREA-03 Domains

Mini-HOPS for MREA-03

Prior to experiment, several configurations were tested leading to selection of 2-way nesting with super-mini at Harvard

- During experiment:
 - Daily runs of regional and super mini at Harvard
 - Daily transmission of updated IC/BC fields for mini-HOPS domains
 - Mini-HOPS successfully run aboard NRV Alliance

Mini-HOPS simulation run aboard NRV Alliance in Central mini-HOPS domain (surface temperature and velocity)

Mini-HOPS for MREA-04

- Portuguese Hydrographic Office utilizing regional HOPS
- Daily runs of regional and super mini at Harvard
- Daily transmission of updated IC/BC fields for mini-HOPS domains to NURC scientists for mini-HOPS runs aboard NRV Alliance

End-to-End System Concept

- Sonar performance prediction requires end-to-end scientific systems: ocean physics, bottom geophysics, geo-acoustics, underwater acoustics, sonar systems and signal processing
- Uncertainties inherent in measurements, models, transfer of uncertainties among linked components
- Resultant uncertainty in sonar performance prediction itself
- Specific applications require the consideration of a variety of specific end-to-end systems

<u>Coupled discrete state vector x (from continuous ϕ_i)</u>

$$\frac{\text{Coupled error covariance}}{P = \varepsilon \left\{ (\hat{x} - x^t) (\hat{x} - x^t)^T \right\}} \qquad P = \begin{bmatrix} P_{AA} & P_{AO} \\ P_{OA} & P_{OO} \end{bmatrix}$$

Coupled assimilation

 $x_{+} = x_{-} + PH^{T} [HPH^{T}+R]^{-1} (y-Hx_{-});$

x_{_} = *A priori* estimate (for forecast) x₊ = *A posteriori* estimate (after assimilation)

PRIMER End-to-End Problem Initial Focus on Passive Sonar Problem

Location: Shelfbreak PRIMER Region Season: July-August 1996 Sonar System (Receiver): Passive Towed Array Target: Simulated UUV (with variable source level) Frequency Range: 100 to 500 Hz Geometries: Receiver operating on the shelf shallow water; target operating on the shelf slope (deeper water than receiver)

Environmental-Acoustical Uncertainty Estimation and Transfers, Coupled Acoustical-Physical DA and End-to-End Systems in a Shelfbreak Environment

Starting with physical environmental data, compute the Predictive Probability Of Detection (PPD) from first principals via broadband Transmission Loss (TL)

- Novel approach: coupled physical-acoustical data assimilation method is used in TL estimation
- Methodology:
 - HOPS generates ocean physics predictions
 - NPS model generates ocean acoustics predictions
 - 100 member ESSE ensemble generates coupled covariances
 - Coupled ESSE assimilation of CTD and TL measurements

Shelfbreak-PRIMER Acoustic paths considered, overlaid on bathymetry. Path 1:

- Source: at 300m, 400 Hz
- Receiver: VLA at about 40 km range, from 0-80m depths

Coupled Physical-Acoustical Data Assimilation of real TL-CTD data:

First Eigenmode of coupled normalized error covariance on Jul 26

Coupled Physical-Acoustical Data Assimilation of real TL-CTD data: TL measurements affect TL and C everywhere.

Determination of PPD (Predictive Probability Of Detection) using SNRE-PDF

Used by UNITES to characterize and transfer uncertainty from environment through end-to-end problems

Coupled HOPS/ESSE/NPS Physics/Acoustics Assimilation

- Oceans physics/acoustics data assimilation: carried-out as a single multi-scale joint estimation for the first time
- ESSE nonlinear coupled assimilation recovers fine-scale TL structures and mesoscale ocean physics from real daily TL data and CTD data
- Shifts in the frontal shape (meander, etc.) leads to more/less in acoustic waveguide (cold pool on the shelf)
- Broadband TL uncertainties predicted to be range and depth dependent
- Coupled DA sharpens and homogenizes broadband PDFs

Integrated Ocean Observing and Prediction Systems

Platforms, sensors and integrative models: HOPS-ROMS real-time forecasting and re-analyses

Coastal upwelling system: sustained upwelling – relaxation – re-establishment

Monterey Bay and California Current System August 2003

M1 Winds

Temperature at 150m

HOPS AOSN-II Re-Analysis

30m Temperature: 6 August – 3 September (4 day intervals)

Descriptive oceanography of re-analysis fields and and real-time error fields initiated at the mesoscale.

Description includes: Upwelling and relaxation stages and transitions, Cyclonic circulation in Monterey Bay, Diurnal scales, Topography-induced small scales, etc.

HOPS AOSN-II Re-Analysis

10.0

18 August

200

0 km Min- 8.2396E+00 Nex- 1.8542E+01

12.00 Day Forecast : 18 Aug 2003

16.00 Day Forecast : 22 Aug 2003

200 0 km Min- 7.8842E+00 Nax- 1.8441E+01 16.00

Which sampling on Aug 26 optimally reduces uncertainties on Aug 27?

- Based on nonlinear error covariance evolution
- For every choice of adaptive strategy, an ensemble is computed

4 candidate tracks, overlaid on surface T fct for Aug 26

Best predicted relative error reduction: track 1

Error Analyses and Optimal (Multi) Model Estimates Strategies For Multi-Model Adaptive Forecasting

- <u>Error Analyses</u>: Learn individual model forecast errors in an on-line fashion through developed formalism of multi-model error parameter estimation
- <u>Model Fusion</u>: *Combine models via Maximum-Likelihood based on the current estimates of their forecast errors*
- 3-steps strategy, using model-data misfits and error parameter estimation
- 1. Select forecast error covariance **B** and bias μ parameterization α , β

$$\mathbf{B} pprox \tilde{\mathbf{B}}(oldsymbollpha); \qquad oldsymbol\mu pprox ilde{oldsymbol\mu}(oldsymboleta); \qquad oldsymbol\Theta = \{oldsymbollpha, oldsymboleta\}$$

2. Adaptively determine forecast error parameters from **model-data misfits** based on the Maximum-Likelihood principle:

 $\Theta^* = \arg \max_{\Theta} p(\boldsymbol{\mathcal{Y}}|\Theta)$ Where $\boldsymbol{\mathcal{Y}} = \{\mathbf{y}_1^o, \mathbf{y}_2^o, \dots, \mathbf{y}_T^o\}$ is the observational data

3. Combine model forecasts \mathbf{x}_i via Maximum-Likelihood based on the current estimates of error parameters (Bayesian Model Fusion) O. Logoutov $\mathbf{x}^* = \arg \min_{\mathbf{x}} \sum_{m=1}^{M} (\mathbf{x} - \mathbf{H}_m \mathbf{x}_m)^T \mathcal{B}_{(\mathbf{\Theta}_m)}^{-1} (\mathbf{x} - \mathbf{H}_m \mathbf{x}_m)$

Error Analyses and Optimal (Multi) Model Estimates An Example of Log-Likelihood functions for error parameters

Error Analyses and Optimal (Multi) Model Estimates **Two-Model Forecasting Example** combine based on relative model uncertainties HOPS re-analysis, 8/21/2003 ROMS re-analysis, 8/21/2003 20' 20 **HOPS and ROMS** 37⁰N 19 **SST** forecast 18 40' 18 Left – HOPS 17 (re-analysis) 20 16 Right – ROMS 36⁰N 15 (re-analysis) 123⁰W 122°W 123°W 30' 121°W 122°W Combined re-analysis, 8/21/2003 **Combined SST** 30' forecast 19 19 37⁰N Left – with *a priori* 18 18 30' error parameters 17 17 36⁰N Right – with 16 16 Maximum-30' 15 Likelihood error 35⁰N 30' 122°W 30' 30' 123⁰W 122°W 121°W 123⁰W 121°W **Model Fusion** parameters

Multi-Scale Energy and Vorticity Analysis

Kinetic energy (KE)		Available potential energy (APE)	
\dot{K}^{arpi}_n	Time rate of change of KE	\dot{A}^{arpi}_n	Time rate of change of APE
$\Delta Q_{K_n^{\varpi}}$	KE advective working rate	$\Delta Q_{A_n^{\varpi}}$	APE advective working rate
$T_{K_n^{arpi}}$	Total KE transfer	$T_{A_n^{\overline{w}}}$	Total APE transfer
$\Delta Q_{P_n^{\varpi}}$	Pressure working rate	b_n^{arpi}	Rate of buoyancy conversion
$F_{K_n^{\varpi},z}$	Rate of vertical dissipation	$F_{A_n^{\varpi},z}$	Rate of vertical diffusion

Symbols for multiscale energetics (time step n, scale window ϖ).

Multi-Scale Energy and Vorticity Analysis

MS-EVA is a new methodology utilizing multiple scale window decomposition in space and time for the investigation of processes which are:

- multi-scale interactive
- nonlinear
- intermittent in space
- episodic in time

Through exploring:

- pattern generation and
- energy and enstrophy
 - transfers
 - transports, and
 - conversions

MS-EVA helps unravel the intricate relationships between events on different scales and locations in phase and physical space. Dr. X. San Liang

Multi-Scale Energy and Vorticity Analysis Window-Window Interactions: MS-EVA-based Localized Instability Theory

Perfect transfer:

A process that exchanges energy among distinct scale windows which does not create nor destroy energy as a whole.

In the MS-EVA framework, the perfect transfers are represented as field-like variables. They are of particular use for real ocean processes which in nature are non-linear and intermittent in space and time.

Localized instability theory:

BC: Total perfect transfer of APE from large-scale window to meso-scale window.

BT: Total perfect transfer of KE from large-scale window to meso-scale window.

BT + BC > 0 => system locally unstable; otherwise stable

If BT + BC > 0, and

- $BC \leq 0 \Rightarrow$ barotropic instability;
- $BT \leq 0 \Rightarrow$ baroclinic instability;
- BT > 0 and BC > 0 => mixed instability

Multi-Scale Energy and Vorticity Analysis Multi-Scale Window Decomposition in AOSN-II Reanalysis

LARGE-SCALE FLOW

The reconstructed largescale and meso-scale fields are filtered in the horizontal with features < 5km removed.

Time windows

Large scale: > 8 days Meso-scale: 0.5-8 days Sub-mesoscale: < 0.5 day

Question: How does the large-scale flow lose stability to generate the meso-scale structures?

Multi-Scale Energy and Vorticity Analysis

• Decomposition in space and time (wavelet-based) of energy/vorticity eqns.

Large-scale Available Potential Energy (APE)

- Both APE and KE decrease during the relaxation period
- Transfer from large-scale window to mesoscale window occurs to account for decrease in large-scale energies (as confirmed by transfer and mesoscale terms)
 Windows: Large-scale (>= 8days; > 30km), mesoscale (0.5-8 days), and sub-mesoscale (< 0.5 days) Dr. X. San Liang

Multi-Scale Energy and Vorticity Analysis MS-EVA Analysis: 11-27 August 2003

Transfer of APE from large-scale to meso-scale

Transfer of KE from large-scale to meso-scale

Multi-Scale Energy and Vorticity Analysis Process Schematic

Multi-Scale Energy and Vorticity Analysis Multi-Scale Dynamics

- Two distinct centers of instability: both of mixed type but different in cause.
- Center west of Pt. Sur: winds destabilize the ocean directly during upwelling.
- Center near the Bay: winds enter the balance on the large-scale window and release energy to the mesoscale window during relaxation.
- Monterey Bay is source region of perturbation and when the wind is relaxed, the generated mesoscale structures propagate northward along the coastline in a surface-intensified free mode of coastal trapped waves.
- Sub-mesoscale processes and their role in the overall large, mesoscale, submesoscale dynamics are under study.

Energy transfer from meso-scale window to sub-mesoscale window.

CONCLUSIONS

- Entering a new era of fully interdisciplinary ocean science: physical-biological-acoustical-biogeochemical
- Advanced ocean prediction systems for science, operations and management: interdisciplinary, multiscale, multi-model ensembles
- Interdisciplinary estimation of state variables and error fields via multivariate physical-biologicalacoustical data assimilation

http://www.deas.harvard.edu/~robinson