
*Corresponding author. Present address: Woods Hole Oceanographic Institution, Woods Hole, MA
02543, USA; Fax: #1-508-457-2132.

E-mail address: landerson@whoi.edu (L.A. Anderson).

Deep-Sea Research I 47 (2000) 1787}1827

Physical and biological modeling in the Gulf
Stream region:

I. Data assimilation methodology

Laurence A. Anderson*, Allan R. Robinson, Carlos J. Lozano
Division of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA

Received 4 October 1999; received in revised form 1 February 2000; accepted 2 February 2000

Abstract

Physical and biological data are assimilated into a time-evolving, mesoscale-resolution three-
dimensional (3-D) ocean model using optimal interpolation. Simulations are conducted in the
Gulf Stream region during the BIOSYNOP/Anatomy of a Meander Experiment in Septem-
ber}October of 1988. Physical data assimilation only or biological data assimilation only
resulted in misalignment of the physical and biological fronts, causing spurious cross-frontal
#uxes of biological quantities. Assimilation of both physical and compatible biological "elds
was necessary for adequate equilibration of the simulated "elds. The resulting combined 4-D
"elds substantially extend the value of the observations alone. A technique is presented for
deriving the necessary, dynamically consistent 3-D physical and biological "eld estimates from
data for initialization and assimilation into time-evolving model simulations. ( 2000 Elsevier
Science Ltd. All rights reserved.
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1. Introduction

Data assimilation in physical and biological ocean models is desirable for keeping
model simulations consistent with observations. Data-assimilative simulations inter-
polate between the data and extrapolate from them dynamically, improving "eld
estimation and allowing parameter estimation through model-data comparison.
Data-assimilative simulations yield dynamically balanced "elds that agree with the
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data, but that can be analyzed in ways that the raw data cannot (due to poor data
resolution), e.g. derivatives taken and balance of terms computed. Multivariate data
assimilation allows the synthesis of various types of available data with each other and
with physical and biological principles (i.e. the model equations), to arrive at a consis-
tent, best estimate of ocean "elds, parameters and processes.

The objective of this paper is to present a multivariate data assimilation methodo-
logy that is able to make a complete and accurate reconstruction of four-dimensional
(4-D) mesoscale physical and biological distributions and processes. This is done in
two steps: (a) the estimation of dynamically consistent 3-D physical and biological
"elds from irregularly spaced 4-D data (i.e. interdisciplinary nowcasts), and (b) the
assimilation of these multivariate data "elds into a 4-D, mesoscale-resolution forward
dynamical ocean model in a smooth way (i.e. with minimal arti"cial shock). An
assimilation technique with low computational expense is chosen so that this method
can be applied to interdisciplinary ocean forecasting and for analyzing interdisciplin-
ary data sets in four dimensions with adequately complex models.

Physical ocean data assimilation into dynamical models is now relatively well
developed (Haidvogel and Robinson, 1989; Anderson and Willebrand, 1989; Brasseur
and Nihoul, 1994; Brasseur, 1995; Malanotte-Rizzoli, 1996). However, biological data
assimilation into three-dimensional (3-D) ocean models is still in its infancy. Biolo-
gical data assimilation is particularly challenging due to the complexity of the ocean
ecosystem (i.e. model errors), its dependency on physical processes, and its signi"cant
(non-Gaussian) spatial and temporal variability.

Data assimilation techniques can be divided into two categories: `forwarda tech-
niques (i.e. estimation theory methods, e.g. direct insertion, nudging, optimal interpo-
lation, Kalman "ltering), which directly incorporate the data into a prognostic model
simulation, and `inversea techniques (i.e. control theory methods, e.g. generalized
inverse, adjoint, conjugate gradient, simulated annealing, Monte Carlo) which seek
the best parameter values, initial conditions or boundary conditions that lead to
optimal agreement between the model and data. Combination of the two approaches
is of course possible. For a review of ocean data assimilation techniques see Ghil and
Malanotte-Rizzoli (1991), Evensen (1994), and Robinson et al. (1998).

Advantages of inverse techniques are that they optimally "t the model to the data
for all space and time, and obey mass conservation. Previous work using inverse
techniques to assimilate biological data have largely been limited to estimating
zero-dimensional steady-state balances (e.g. Niquil et al., 1998; Jackson and Eldridge,
1992; VeH zina and Pace, 1994) or "tting time-series data with zero spatial dimensions
(Carpenter et al., 1994; Fasham and Evans, 1995; Matear, 1995; Lawson et al., 1996;
Hurtt and Armstrong, 1996, 1999; Prunet et al., 1996a, b; Harmon and Challenor,
1997; Spitz et al., 1998; Evans, 1999). A few studies have used inverse methods with
three-dimensional ocean models to assimilate biological data (Nihoul et al., 1994;
Matear and Holloway, 1995; Bowen et al., 1995; Semovski and WozH niak, 1995;
McGillicuddy et al., 1998) but rely on simpli"ed dynamics or assume steady-state
balance. At present, the use of inverse techniques with fully complex, 4-D mesoscale-
resolution physical}biological models is primarily limited by computational expense,
and has not yet been successfully demonstrated.
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In this study we use the forward data assimilation method of optimal interpolation,
commonly used in meteorological forecasting (Bengtsson et al., 1981; Phillips, 1982;
Ghil, 1989; Lorenc et al., 1991) and physical ocean forecasting (Robinson and Leslie,
1985; Mellor and Ezer, 1991; Fox et al., 1992; Robinson, 1992; Lozano et al., 1996).
Previous studies using forward techniques to assimilate biological data in three
dimensions have used the simpler methods of direct insertion (Ishizaka, 1990) and
nudging (Najjar et al., 1992; Anderson and Sarmiento, 1995; Armstrong et al., 1995;
Moisan et al., 1996). Semovski and WozH niak (1995) used a simpli"ed form of optimal
interpolation to assimilate CZCS data into a coarse-resolution model of the North
Atlantic, but there was no circulation model per se, i.e. no horizontal advection or
di!usion, only vertical mixing. To our knowledge, this is the "rst study to assimilate
both physical and biological data into a prognostic, eddy-resolving 3-D coupled
model using optimal interpolation to reconstruct an observed mesoscale event.

From Ishizaka (1993), Johannessen et al. (1993) and the studies listed above, the
current problems facing forward biological data assimilation can be summarized:

(1) Variability in the data or non-smooth assimilation methods (e.g. direct insertion)
can generate discontinuities (spikes) and subsequently waves (assimilation shock)
in the physical and biological "elds, producing spurious behavior.

(2) Assimilating only one biological variable can cause unrealistic values in non-
assimilated variables. This indicates values for all biological variables should be
assimilated. Assimilating all biological variables is also important for keeping
total nitrogen (or carbon, etc.) approximately conserved in the simulation. But
how does one determine values to be assimilated for variables for which there is no
data?

(3) Biological variables may quickly change from their assimilated values, for instance
by returning to the pre-assimilation model values. While this is often an indication
of inadequacy of the biological model (i.e. that the model state is being pulled
toward a solution that does not agree with the data), it may also be due to
boundary conditions, surface forcing or physical structures that are inconsistent
with the biological data.

(4) A way is needed to interpolate and extrapolate data spatially. For example, ocean
color data need to be extrapolated vertically. The assimilation of sparse physical
data points that are not adequately interpolated can generate spurious eddies.

(5) It is di$cult to assimilate multivariate data in a smooth way (i.e. with minimal
arti"cial shock), because di!erent data types often contain apparent discrepancies.

In addition to addressing these points, we also wished to investigate whether the
previously used techniques of assimilating only biological data into a physical}biolo-
gical model (e.g. Armstrong et al., 1995) or assimilating only physical data (to drive the
biology) are reasonable for obtaining mesoscale biological distributions that are in
good agreement with the data. Solutions to all the above issues have not been o!ered
in previous studies. The originality of our result is that here we have developed
a method that addresses each of these successfully. One of our main conclusions is
therefore the methodology presented in Section 2. The general method is not limited
to the study described here, but can be applied to analyzing many interdisciplinary
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oceanographic data sets. As the model is prognostic, it need only be run forward to
provide a forecast after assimilation of the most recent data.

This study focuses on the Gulf Stream frontal region for four reasons. The "rst is to
study the physical and biological processes at the Gulf Stream front, the topic of our
companion paper (Anderson and Robinson, 2000). The second reason is because of
the relatively large amount of physical and biological data available in this region for
model calibration, assimilation and validation (e.g. Halkin and Rossby, 1985; Bower
and Rossby, 1989; Lohrenz et al., 1993; Hitchcock et al., 1993; Lindstrom and Watts,
1994). The third is because of our previous experience in physical modeling in the Gulf
Stream region (e.g. Robinson et al., 1988; Spall and Robinson, 1990; Robinson and
Gangopadhyay, 1997; Gangopadhyay and Robinson, 1997). The fourth is as a basis
for future work in realtime physical}biological forecasting in the northwest Atlantic.

In this study we synthesize information from two main data sets. The "rst is the
combined fall BIOSYNOP/Anatomy of a Meander data set, from cruises made in the
Gulf Stream region in Sept}Oct 1988. The second is the GULFCAST data set for this
same time period, which is weekly information on Gulf Stream axis and ring positions.
These data sets are described in Section 2.3. In this study we use the data for model
initialization, assimilation and veri"cation.

We concentrate on a speci"c 17-day time period, 21 Sept}6 Oct 1988, which is Leg 1
of the Fall BIOSYNOP experiment. The challenge is to construct an accurate realization
of the Gulf Stream frontal position and physical}biological "elds for that speci"c period.

2. Method

2.1. Overview of modeling approach

The simulations in this study use a time-evolving 3-D physical model coupled to
a biological model, which are described in Section 2.2 and the appendix. Physical and
biological "elds are needed for model initialization and assimilation. Because the state
and position of the Gulf Stream front and rings at a speci"c time are desired, a long
model spin-up period cannot be used to generate the initialization "elds (as is often
done for idealized or annual cycle simulations). Rather the initialization and assimila-
tion "elds must be generated prior to the main simulation as our best estimate of the
"elds on a speci"c date. Furthermore, the physical and biological "elds must be
consistent with each other to reduce the impact of model equilibration (`shocka)
within the main simulation. The general method we have developed to do this, shown
in Figs. 1 and 2, will now be brie#y overviewed, and described in greater detail in
Section 2.4.

First, initial estimates of the temperature and salinity distributions in the domain,
including mesoscale structures of interest, are made. This is done by means of
a physical `feature modela, described in Section 2.4.1, which is based on the Anatomy
of a Meander/GULFCAST data described in Section 2.3. Next, temperature and
salinity data are melded into these "elds to bring the "eld estimates as close to
observed as possible. The melding scheme is described in Section 2.4.2. A "rst
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Fig. 1. Flowchart for creating compatible physical and biological initialization and assimilation "elds.

approximation to the velocity "elds is then made using the thermal wind relationship.
Ageostrophic vertical velocities are generated by running the "elds for several days in
a primitive equation model, as described in Section 2.4.3. This completes the deter-
mination of the physical "elds (temperature, salinity and velocity). Initial estimates are
then made for the biological "elds. As the biological data are sparse but relatively
well-correlated with temperature, and as the biological distributions are desired to be
consistent with the mesoscale physical features, initial estimates for the biological
"elds are made using the temperature distribution and biological-temperature cor-
relations based on the BIOSYNOP data. This procedure is described in Section 2.4.4.
1-D sensitivity tests are carried out at this time in order to tune the biological model
parameters to values that give the best agreement between the model and observa-
tions. Biological data are then melded into the initial estimate "elds, as described in
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Fig. 2. Time chart of compatible physical and biological "eld generation and assimilation into the main
simulation.

Section 2.4.5. Finally, the biological "elds are dynamically adjusted to each other and
the synoptic velocity "eld, as described in Section 2.4.6. This completes the procedure
necessary to generate consistent physical and biological "elds for initialization or
assimilation. The temporal evolution of this procedure and the assimilation of these
"elds into the main simulation is illustrated in Fig. 2. The simulations conducted to
generate the initialization and assimilation "elds are done in what we call `adjustment
spacea, outside of the main simulation of interest, which is in `simulation spacea.

The method used for data assimilation is an optimal interpolation scheme, de-
scribed in Section 2.5. This method utilizes weights based on error "elds. As indicated
on the right-hand column in Fig. 1, these error "elds are determined during the
objective analysis procedure prior to the main simulation.

2.2. The model

The Harvard Ocean Prediction System (HOPS) is used (Lozano et al., 1996;
Robinson, 1996). The physical and biological models are described in detail in the
appendix. The physical model is a primitive equation model, run in a domain with
15 km horizontal resolution and 30 vertical levels. The biological model (Fig. 3,
Tables 1}3) is of the nitrogen cycle. The "ve state variables are nitrate (N), ammonium
(A), phytoplankton (P), zooplankton (Z), and DON plus suspended PON (D). These
are advected and di!used in the physical model in the same manner as temperature
and salinity:

LC

Lt
#V )$C"i

)
+ 2
)
C#

L
Lz

K
7A

LC

LzB#S,

1792 L.A. Anderson et al. / Deep-Sea Research I 47 (2000) 1787}1827



Fig. 3. Five-component biological model. The "ve state variables are nitrate (N), phytoplankton (P),
zooplankton (Z), ammonium (A), and dissolved and suspended particulate organic nitrogen (D). Fast-
sinking detritus (F) is included, but sinks and remineralizes instantaneously, and thus is not an explicit state
variable.

Table 1
Biological model variables

i depth indici of the current model level (nondimensional)
z depth of the current model level (m)
*z vertical thickness of the current model level (m)
A ammonium concentration (lM)
C phytoplankton carbon-to-chlorophyll ratio (g C/g Chl)
D semi-labile DON # suspended PON concentration (lM N)
E fraction of zooplankton loss rate going into F (nondimensional)
F fast-sinking detritus (implicit variable)
G zooplankton grazing rate (day~1)
I PAR light intensity (W m~2)
J(i) fast-sinking detritus #ux at the bottom of level i (mmol N m~2 day~1)
¸
0

light limitation factor (nondimensional)
¸ phytoplankton doubling rate (day~1)
M zooplankton loss rate (lM N day~1)
N nitrate concentration (lM)
P phytoplankton concentration (lM N)
Q

1
nitrate limitation factor (nondimensional)

Q
2

ammonium limitation factor (nondimensional)
R fast-sinking detritus remineralization rate (lM N day~1)
¹ temperature (C)
Z zooplankton concentration (lM N)

where C is an arbitrary biological concentration (in micromoles of nitrogen per
liter), V is the 3-D velocity vector, i

)
is the horizontal di!usivity coe$cient, K

7
is

the spatially and temporally variable vertical di!usivity coe$cient, and S represents
the biological source and sink terms shown in Fig. 3. Fast-sinking PON (F) is
also included in the model, but does not have an explicit distribution, as it
is parameterized as sinking and remineralizing instantaneously, as explained in the
appendix.
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Table 2
Biological Model Parameters

Value Description! Reference"

k
8

0.04 light attenuation coe$cient of seawater (m~1) 1
k
P

0.04 light attenuation coe$cient of phytoplankton (m~1 lM~1) 2
l
0

5.0 maximum photosynthetic rate (g C (g Chl h)~1) 3
a 0.142 initial slope of P}I curve (g C (g Chl h)~1 (W m~2)~1) 3
b 0.0 photoinhibition factor (g C (g Chl h)~1 (W m~2)~1) 3
j 3.5 factor for NO

3
uptake inhibition by NH

4
(lM~1) 4

k
1

0.01 nitrate half-saturation constant (lM) 4
k
2

0.01 ammonium half-saturation constant (lM) 4
r
.

1.5 maximum zooplankton grazing rate (day~1) 4
" 1.5 Ivlev constant for zooplankton grazing (lM~1) 4
k
A

0.25 nitri"cation rate (day~1) 4
m

P
0.10 phytoplankton mortality rate (day~1) 4

c 0.20 fraction of zooplankton grazing excreted (nondim.) 4
n
1

0.10 linear zooplankton loss rate (day~1) 4
n
2

1.0 quadratic zooplankton loss rate (day~1 lM~1) 4
b
1

0.25 fraction of zooplankton loss to NH
4

(nondim) 4
b
2

0.25 fraction of fast-sinking detritus loss to NH
4

(nondim.) 4
k
D

0.02 remineralization rate of D (day~1) 4

!All molar units refer to moles of nitrogen per liter of seawater
"References: 1"Sarmiento et al. (1993); 2"McGillicuddy et al. (1995); 3"Lohrenz et al. (1993);

4"tuned in this study

Table 3
Biological auxiliary equations

I(i)"I(i!1)exp(!(k
w
#k

P
P)*z) (1)

¸
0
"(1!exp(!aI/k

0
))exp(!bI/k

0
) (2)

Q
2
"A/(k

2
#A) (3)

Q
1
"min(e~jAN/(k

1
#N),1!Q

2
) (4)

C"max(20,exp(4.62!0.014DzD)) (5)

¸"k
0
min(1,¸

0
/(Q

1
#Q

2
))1.066T~22/C (6)

G"r
m
(1!exp(!KP)) (7)

M"cGZ#n
1
Z#n

2
Z2 (8)

E"min(max(0.01, min(0.50, 4.9P!0.235)), 0.99!b
1
) (9)

J(i)"J(i!1)exp(!*z/max(100,1.15DzD))#EM*z (10)

R"(J(i!1)!(J(i)!EM*z))/*z (11)

2.3. The data

Two primary data sets were used for model initialization, assimilation and veri"ca-
tion: the combined BIOSYNOP/Anatomy of a Meander data set and the
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Fig. 4. Solid lines: Weekly estimates of Gulf Stream axis and ring locations from GULFCAST for 1988.
Crosses: CTD locations taken by the R/V Endeavor and the R/V Cape Hatteras during BIOSYNOP between
yeardays 261 and 290, binned weekly. The model domain is also shown.

GULFCAST data set, which will now be described. In additon, other data sets (e.g.
BATS, TTO/NAS) were used for model calibration purposes, as noted in other
sections, but were not assimilated directly.

The Fall BIOSYNOP cruise was made aboard the R/V Cape Hatteras between 21
Sept and 21 Oct 1988 (Lohrenz et al., 1993); observations that we utilize include 122
XBT stations, 124 CTD stations and 32 nutrient (NO

3
and NO

2
) stations. The Fall

Anatomy of a Meander cruise was made aboard the R/V Endeavor between 17 Sept
and 13 Oct 1988 (Hitchcock et al., 1993; Mariano et al., 1996); the data we use consist
of 160 XBT stations and 92 CTD stations, the latter including #uorometer (chloro-
phyll) measurements. An additional 38 AXBT stations were made on 13 Sept and
4 Oct. The BIOSYNOP/Anatomy of a Meander CTD station locations between
yeardays 261 and 290 are shown in Fig. 4 as crosses. During this period the R/V
Endeavor made 4 triangular sections around a Gulf Stream meander, while the R/V
Cape Hatteras wove back and forth across the stream axis. As can be seen, this is an
interdisciplinary data set of good mesoscale spatial and temporal resolution. For
brevity, we will hereafter refer to the combined BIOSYNOP/Anatomy of a Meander
cruise data as BIOSYNOP.
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The GULFCAST data set consists of weekly analyses of Gulf Stream axis and ring
positions, derived from AVHRR sea surface temperature, GEOSAT altimetry
and AXBTs (Robinson et al., 1989a, b; Glenn and Robinson, 1995; Gangopadhyay
and Robinson, 1997; A. Gangopadhyay, unpublished data). Stream axis locations
were further updated using the Anatomy of a Meander transect data. The
GULFCAST data set is also shown in Fig. 4. Two major events occurred in the
vicinity of the data during the observational period: the absorption of a warm-core
ring between yeardays 272 and 279, and the formation of a cold-core ring following
yearday 286.

As discussed in Sections 2.4.2 and 2.4.5, the data objectively analyzed into initializa-
tion and assimilation "elds are temperature, salinity, nitrate and chlorophyll. Zo-
oplankton biomass estimates from BIOSYNOP (Ashjian, 1993; Ashjian et al., 1994)
were used for model calibration (Section 2.4.4), and primary production estimates
(Lohrenz et al., 1993) for model veri"cation.

During Leg 1 of BIOSYNOP (yearday 261}280) surface nitrate values were low,
suggesting strati"ed conditions typical of late summer. During Leg 2 high surface
nitrate values were encountered, suggesting the beginning of autumn mixed layer
deepening. Since in our study (Anderson and Robinson, 2000) we wished to examine
the nutrient transport #uxes during summer-like conditions, we restricted our simula-
tion to the time period of Leg 1.

2.4. Estimation of consistent physical and biological xelds

The following subsections describe the method used to generate synoptic, consis-
tent physical and biological "elds as outlined in Fig. 1. This uses a combination of
data, parameterizations, objective analysis techniques and model simulations carried
out in `adjustment spacea (Fig. 2).

2.4.1. Initial estimates of physical xelds: the physical feature model
We wish to initialize the model with temperature and salinity "elds for the Gulf

Stream density structure, meander positions and ring locations as they were on 21
Sept 1988 (yearday 265). Toward this end we cannot directly use climatological data
atlases such as Levitus (1982), which has a greatly broadened Gulf Stream and no
rings or meanders. We used instead a data-based `feature modela (Gangopadhyay et
al., 1997) which estimates the Gulf Stream structure by spatially extending (horizon-
tally and vertically) the realtime data through parameterized structures. From the
eight cross sections of the Gulf Stream made by the R/V Endeavor during BIO-
SYNOP, mean temperature and salinity cross sections are constructed. These cross
sections are placed in the model domain along the location of the Gulf Stream axis as
determined from GULFCAST (Fig. 4) for the date in question. To the north and south
of the Gulf Stream, the last pro"le of the cross section is persisted; thus, the Sargasso
and Slope waters are horizontally homogeneous. Below 840 m (the depth of the
cross-sections), all waters decay exponentially with depth to the same properties
(¹"4.263C, S"35.01). The deep western boundary current is not included. Idealized
ring structures of sizes determined from the AVHRR imagery are placed at observed
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Fig. 5. Feature model estimate of sea surface temperature for yearday 265, 1988.

locations. The result is an idealized but synoptic 3-D estimate of the Gulf Stream
structure and location for the date in question, as shown in Fig. 5.

Feature models are also necessary for creating assimilation "elds. For instance,
while it is desirable to assimilate SST data into the model, SST is insu$cient to direct
the Gulf Stream northward if the deeper structure is directing it southward. Sea
surface information needs to be extrapolated with depth, and the feature model does
this, using the GULFCAST SST information on Stream axis and ring locations to
estimate the deeper structure.

2.4.2. Objective analysis of physical data
Into the idealized temperature and salinity "elds described above, we meld in

the BIOSYNOP ¹ and S data. Incorporating the available data gives us the best
estimate of the "elds at that time and is used to verify the feature model, i.e. to con"rm
that the initial "eld estimates agree well with the data at their locations in space
and time.

The melding procedure is based on Carter and Robinson (1987) with modi"cations.
We "rst used the Carter and Robinson (1987) scheme, but found it to overestimate the
range of observed values near the sharp Gulf Stream frontal gradient. A simpli"ed
scheme that does not overestimate was therefore used instead.

All observations are "rst vertically interpolated to #at (model level) depths, and
objective analyses performed in the x}y plane. The value of the newly estimated "eld
at a speci"c time and grid location is determined by

¹0!
j
"

i.!9

+
i/1

w
ij
¹0"4

i
/
i.!9

+
i/1

w
ij
,
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where ¹0!
j

is the estimated value at (x
j
, y

j
, t

j
), ¹0"4

i
is an observation at (x

i
, y

i
, t

i
), and

the weight w
ij

is

w
ij
"exp(!((t

j
!t

i
)/t

d
)2!((x

j
!x

i
)/x

d
)2!((y

j
!y

i
)/y

d
)2),

where t
d
, x

d
and y

d
are temporal and spatial correlation scales. We use t

d
"4 days and

x
d
"y

d
"20 km, the latter approximately corresponding to the spacing of the BIO-

SYNOP observations. Although water parcels in the Gulf Stream are themselves
advected very quickly (up to 150 km/day~1), properties associated with meanders (in
the Eulerian framework) change much more slowly, such that these correlation scales
are reasonable (Hitchcock et al., 1993; Mariano et al., 1996). In this way, observations
made over several days are collected into a single "eld on a speci"c day (with the data
weighted by its distance in time and space).

The feature model described in Section 2.4.1 is used as an initial estimate. The initial
estimate at a given location is treated as an observation with w

ij
"0.2. The value 0.2

was determined empirically so that at the location of an observation, the observation
has 5 times the weight of the initial estimate; 25 km from an observation, it has equal
weight with the initial estimate; at 50 km, the observation weight is 1% of the initial
estimate weight. Thus, the maximum radius of in#uence of an observation is approx-
imately 50 km. Away from all observations the objectively analyzed "eld reverts to the
feature model "eld.

In addition, associated with each estimated "eld is a normalized error "eld,
e
j
"1!max(w

ij
) (excluding the weight of the feature model "eld). Therefore, at

a time and place where an observation is present, the error value is zero, and far from
the data the error value is one. This error "eld is used during data assimilation, as
described in Section 2.5. Poor data accuracy can be accounted for by increasing the
error values.

An objectively analyzed temperature "eld and its corresponding error "eld are
shown in Fig. 6.

2.4.3. Physical dynamical adjustment
From the ¹ and S "elds, geostrophic velocity "elds are then computed using the

thermal wind relationship and a level of no motion of 1210 m. The resulting horizontal
velocity cross section of the Gulf Stream agrees well with Halkin and Rossby (1985).

The Gulf Stream, however, is not purely geostrophic. If a simulation is started from
a geostrophic initialization, large vertical velocities associated with Gulf Stream
meanders and rings are immediately generated, and it takes several days for the
vertical velocities to equilibrate. It is critical to determine these ageostrophic vertical
velocities because of their signi"cant impact on biological "elds. Therefore, all phys-
ical "elds to be used for initialization or assimilation are "rst run in the primitive
equation model for 7 days, to allow this dynamical adjustment to occur. By the 7th
day the adjustment is essentially over, with no further qualitative and little quantitat-
ive change in vertical velocities. Dynamically adjusted temperature, horizontal velo-
city and vertical velocity "elds are shown in Fig. 7. As discussed in Anderson and
Robinson (2000), the vertical velocities agree well with observations (e.g. Lindstrom
and Watts, 1994) both qualitatively and quantitatively.
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Fig. 6. Estimate of sea surface temperature (in C) for yearday 265, 1988, after melding in the BIOSYNOP
temperature observations. The error "eld indicates where data have been incorporated. Away from the data
the error value is 1.0.

Fig. 7. Temperature (C), horizontal velocity (cm/sec) and vertical velocity (m/day) after the 7-day physical
dynamical adjustment run, i.e. for yearday 272. Horizontal velocity is subsampled every other grid point.
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Fig. 8. Nitrate versus temperature trend from the BIOSYNOP data and TTO/NAS stations 235}245. The
solid line is the piecewise linear "t used to make an initial estimate for nitrate (see text).

In addition, preliminary simulations were carried out at this point; minor adjust-
ments were made to initial ring and stream positions to ensure that the physical
evolution was consistent with later data, to ensure smooth assimilation of the later
physical "elds.

This dynamical adjustment completes the preparation of the physical "elds. Since the
physical "elds were adjusted for 7 days, the initial realization is now no longer for day
265 but for day 272. This is used to initialize the main simulation. A "eld for day 279 is
constructed in the same manner (Fig. 2), to be assimilated into the main simulation.

2.4.4. Initial estimates of biological xelds
The three-step procedure used to generate the physical "elds (making an initial

estimate, melding in available data, dynamical adjustment; see Fig. 1) is also used to
generate the biological "elds. Because we wish the biological distributions to coincide
with the mesoscale physical features (e.g. the boundary in Slope versus Sargasso
phytoplankton to coincide with the location of the physical Gulf Stream front), initial
estimates for the biological "elds cannot be directly based on climatological biological
atlases or even parameterized spatial structures. Instead we use a `biological feature
modela, which uses the temperature distribution derived in Section 2.4.3 and
data-based correlations between temperature and biological properties to make initial
estimates of the biological distributions.

Let us begin with nitrate. First, model temperature pro"les at grid points (i"70,
j"35) and (i"70, j"5) were assumed to be representative of Slope and Sargasso
waters. Corresponding nitrate pro"les were then determined using the piecewise-
linear NO~3-temperature relationship of the BIOSYNOP and TTO/NAS data
(Fig. 8). However, this relationship breaks down near the sea surface, and was
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Fig. 9. Chlorophyll pro"les for Sargasso water based on R/V Endeavor stations 2, 5, 18}20 and for Slope
water stations 11}14, 32}34.

therefore applied only below 200 m. Nitrate was set to 0.005 lM in both Sargasso and
Slope waters from the surface to 80 and 30 m, respectively; a linear gradient with
depth was used between these depths and 200 meters. Lastly, these two nitrate pro"les
were horizontally interpolated as a linear function of temperature across the model
domain, temperature serving as an indicator of watermass.

The phytoplankton distribution was initialized by "rst determining typical chloro-
phyll pro"les for Slope and Sargasso waters during BIOSYNOP (Fig. 9), and convert-
ing these from mg Chl m~3 to lM N using a depth-dependent C/Chl ratio (Table 3,
Eq. (5); from Malone et al., 1993), and a C/N ratio of 6.625 mol/mol (Red"eld et al.,
1963). These two phytoplankton pro"les were then assumed to be associated with the
Slope and Sargasso temperature pro"les previously described, and were horizontally
interpolated linearly with temperature.

The BIOSYNOP zooplankton data made available to us were relatively sparse.
The spatial distribution of zooplankton essentially mimics that of phytoplankton, its
prey, i.e. decreasing with depth, and with higher biomass in Slope than Sargasso water
(Ashjian et al., 1994). As such, the zooplankton distribution was initialized as propor-
tional to the phytoplankton "eld. A proportionality constant of 1.0 (mol N/mol N)
was used, based on estimates from the BIOSYNOP data (Lohrenz et al., 1993;
Hitchcock et al., 1993; Ashjian et al., 1994; Mariano et al., 1996).

Measurements of NH
4

(unpublished) were made during BIOSYNOP but appear
uncalibrated (negative values, high positive values). In the open ocean NH

4
has been

observed to have a subsurface maximum near the Chl maximum (Brzezinski, 1988).
Thus, NH

4
was also initialized as proportional to the phytoplankton distribution,

using a factor of 0.2 so that a concentration of 0.01 lM NH
4

is obtained for the
Sargasso mixed layer (Brzezinski, 1988).

There is no BIOSYNOP data for (non-living) suspended PON or DON. Other data
sets however indicate that their vertical distribution is similar to plankton, i.e.
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decreasing with depth, and higher in Slope than Sargasso water. The BATS data
(Michaels et al., 1994b; http://www.bbsr.edu/) indicate that in the Sargasso in late
summer POC values in the euphotic zone are on average 25 mg C/m3. For Slope
waters, Joyce et al. (1992) estimate suspended particulate matter in the upper 90 m in
summer at typically 165 mg dry wt/m3, at most 50% of which could be organic
carbon. We therefore estimate non-living suspended PON is approximately 0}5 times
the phytoplankton concentration in both Sargasso and Slope waters in summer,
depending upon what fraction of the observed PON is `suspendeda (e!ectively,
sinking rate(1 m day~1) and labile on a timescale(100 days. DON is also included
in state variable D. Surface DON concentrations in September near Bermuda are near
5 lM N (Hansell and Carlson, 2000; BATS data at http://www.bbsr.edu/). However,
this pool changes very little during summer, such that only a small fraction is expected
to be labile on short timescales. If we consider the labile fraction to be 10% (i.e. 0.5 lM
N), then the total concentration of D should be approximately 10}15 times the
phytoplankton concentration.

We cannot presume to be able to make a more accurate estimate for D, in part
because of the arbitrariness in the de"nitions of `suspendeda PON (sinking rate
(1 m day~1? (0.1 m day~1?) and `semi-labilea DON (remineralization time-
scale"10 days? 100 days?), and because of the uncertainty in observed concentra-
tions for speci"c de"nitions. Fortunately, an accurate estimate of D is not vital. Firstly,
it is not one of our variables of interest (since we have no data for assimilation or
validation). Secondly, it is not an independent variable in the ecosystem equations
(Fig. 3 and Table 3). That is, the only term in which it is involved is k

D
D (see Fig. 3),

which supplies NH
4

to fuel recycled production. The values of both D and k
D

are
poorly known, which means there are two degrees of freedom (their values), but only
one constraint (the observed production rate). We therefore are allowed to `choosea
one, as long as the other is `tuneda so that enough NH

4
is supplied to match the

observed production rate. The most sensible choice of D is at its lower estimate, which
allows a higher k

D
and a faster dynamical adjustment (allowing the D distribution to

reach near-equilibrium more quickly), which is important for reasons given in Section
2.4.6. We therefore set the initial estimate for D as 10 times the phytoplankton
concentration. It turns out the best k

D
value corresponding with this D concentration

is (50 days)~1, in good agreement with estimates for semi-labile DOM (Archer et al.,
1997), which gives us con"dence in these D and k

D
estimates.

It should be noted that these rough, initial estimates are not crucial because during
the dynamical adjustment (Section 2.4.6) the biological tracers will adjust to be
consistent with each other, the biological equations and the physical circulation. We
do however make the best possible estimates based on the data (rather than starting
from completely arbitrary initial values) because it (a) allows a shorter biological
dynamical adjustment period, and consequently better agreement with the data (see
Section 2.4.6), and (b) minimizes the danger of the state variables in phase space being
attracted towards a local minimim that is not the one closest to the observed state.

Values for the biological model parameters (Table 2) are also needed. First, values
from the literature were chosen as starting points. The parameters were then adjusted
(within their ranges of uncertainty) so that the size of the terms in Fig. 3 are near the
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observed rates and approximately balance. 1-D sensitivity tests were then carried out
in Sargasso and Slope waters to further tune the biological model parameters,
parameterizations and initial conditions. The goal was for the biological variables
after 20 days of simulation to have values near observed and a small time rate of
change. Bermuda Atlantic Time-series Study (BATS) data (Michaels and Knap, 1996)
were used to help calibrate the model in Sargasso waters. Variables not adjusting to
values near observed indicated bad parameter values or parameterizations. These
sensitivity tests therefore led to the re"nement of the biological model. It was found
that the variables at day 20 were relatively insensitive to the uncertainty in their initial
estimates, except for D, which changes slowly due to its slow remineralization rate. In
future work, these 1-D sensitivity tests will be replaced with automated data-"tting
(inverse) methods (e.g. Fasham and Evans, 1995) to determine optimal parameter
values and evaluate parameterizations.

2.4.5. Objective analysis of biological data
Into these initial estimate biological "elds we meld the BIOSYNOP biological data.

The objective analysis scheme for biological data is the same as that used for physical
data, described in Section 2.4.2. The only biological data available are nitrate and
phytoplankton biomass, the latter determined from chlorophyll using the depth-
dependent C/Chl ratio and constant C/N ratio as described in Section 2.4.4. Zoo-
plankton data were sparse and therefore used only for model calibration. The
correlation time- and length-scales used for nitrate and phytoplankton are identical to
those used for the physical "elds (Steele and Henderson, 1992; Denman and Abbott,
1994).

As the Chl distribution in nature is typically log-normal (Campbell, 1995), a few
studies (e.g. Denman and Freeland, 1985; Denman and Abbott, 1994) objectively
analyze log

10
(Chl) rather than Chl concentration itself in order to properly satisfy

requirements in the gridding algorithm based on statistical interpolation (e.g. for the
OA estimate to equal the maximum likelihood estimate). In this study we chose to
objectively analyze phytoplankton concentration itself because the simulated phyto-
plankton "elds are not log-normal but primarily bimodal; in the simulations the
phytoplankton scales are essentially the same as those of temperature and NO

3
. It

remains to be explored how log-normal data are best assimilated into a simulation
with "nite grid resolution.

2.4.6. Biological dynamical adjustment
The "nal step is to conduct a biological adjustment simulation (see Fig. 1). That is,

while we have made initial estimates for the biological "elds and parameters (Section
2.4.4) and melded in data (Section 2.4.5) the biological "elds are not necessarily
consistent with each other, with the model parameters or with the 3-D physical
transports. Consequently, simulations typically undergo an immediate bloom or
decline solely as an adjustment to the initial conditions. We expect the biological "elds
to be primarily in balance, except possibly along the Gulf Stream itself, because the
biological concentrations in the Slope and Sargasso waters are not observed to
change greatly during late summer. In addition, in this study we want to examine
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changes due to Gulf Stream processes alone, and therefore do not want the
background "elds in the Slope and Sargasso waters to be changing greatly. Like
with the physical initialization, a dynamical adjustment is necessary, and this
is done by conducting a simulation with the physical}biological model using frozen
("xed) temperature, salinity and velocity "elds. In this way, the biological "elds are
given time to achieve greater balance with the desired 3-D physical "elds and
each other.

It is necessary for all the biological state variables to dynamically adjust simulta-
neously. For example, it was also tried to keep the NO

3
"eld "xed while allowing the

other biological "elds to adjust. However it was found that, once the main simulation
was started, the NO

3
"eld would rapidly change. This is because, when NO

3
is held

"xed, the biological variables do not go to the true steady-state solution that is
determined by the parameter values. Also, the initial NO

3
"eld estimate may not be in

balance with the physical transports.
It is desirable for the adjustment simulation to be as short as possible because (a)

after the rapid initial adjustment the biological state often has a slow drift (see below),
(b) the NO

3
gradient across the front weakens as the run progresses (see below), and

(c) in reality the biology at the front is not in steady state. Each of these cause the
biological "elds to depart from observed (the initial conditions) as the adjustment run
progresses. Nevertheless, the adjustment run must be long enough to get through the
initial phase of rapid adjustment.

The biological adjustment run is conducted for 20 days. The biological "elds adjust
rapidly in the "rst few days and by day 20 have largely equilibrated. Phytoplankton
adjust quickly (approx. 7 days), but it takes 20 days for the more slowly-changing
"elds (viz. D) to settle down. It is not necessary that the rate of change on the "nal day
be zero; it should be the size observed. The time rate of change on day 20 is very small
((0.01 lM N/day) except for D in Slope waters, whose change per day is still less than
2% of its total concentration, and for NO

3
, which is decreasing at the top of the

nutricline due to entrainment into the mixed layer. Both N and D are e!ectively being
redistributed to greater depths. As DOM does slowly decrease during summer
(Michaels et al., 1994a) and the nutricline does deepen (Strass and Woods, 1991), this
slow drift is consistent with observations. For a simulation during a more active
period (e.g. the spring bloom), a much shorter adjustment period should be used.

The "nal, adjusted biological "elds are shown in Fig. 10. The characteristics of these
"elds are discussed in detail in Anderson and Robinson (2000). Fields for day 272 are
used for biological intialization and "elds for day 279 for assimilation.

Fig. 11a shows how the dynamically adjusted NO
3

values along i"60 have
changed from their initial estimates. In both Slope and Sargasso waters NO

3
stays

near the initial-estimate T-NO
3

trend. In Slope waters, the increased NO
3

at 203C are
within the range of observations (Fig. 8). In the Gulf Stream, horizontal and vertical
advection and di!usion cause the T-NO

3
values to start to fall o! the line. This

illustates why a short dynamical adjustment period is desirable: advection and
di!usion gradually deteriorate the NO

3
gradients across the front, particularly in the

deep ocean, because the large-scale physical and biological processes that maintain
the front are not included in the subdomain.

1804 L.A. Anderson et al. / Deep-Sea Research I 47 (2000) 1787}1827



Fig. 10. Dynamically adjusted biological "elds for yearday 272, used to initialize Runs 6 and 7.

In Slope water, phytoplankton at the sea surface remain close to their initial
estimate (Fig. 11b). The subsurface phytoplankton maximum is low by a factor of two,
but this is within the range of observed pro"les for Slope water, which were highly
variable. In addition, the initial-guess P maximum may be an overestimate (see
Anderson and Robinson, 2000). The depth of the subsurface maximum agrees well
with the observations. Zooplankton in Slope water mimic phytoplankton with ap-
proximately a 1 : 1 ratio, consistent with the initial assumptions. In Sargasso water,
phytoplankton agree well with the initial estimate (data). Zooplankton mimic phytop-
lankton, but are lower by almost a factor of two. This is acceptable given that the
initial assumption of a 1 : 1 ratio was very approximate, and is within the uncertainty
bounds of the data.
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Fig. 11. (a) Dynamically adjusted NO
3

values along i"60 for Slope (o), Sargasso (x) and Gulf Stream (#)
water, compared to the initial-estimate T-NO

3
trend (straight lines). (b) Dynamically adjusted phytoplan-

kton (dashed) and zooplankton (dot-dashed) pro"les for Slope and Sargasso water, relative to their initial
estimates (solid lines).

2.5. Data assimilation scheme

Finally, we describe the data assimilation method, which is applied to dynamically
adjusted assimilation "elds derived in Section 2.4. The assimilation method used is
optimal interpolation (Lozano et al., 1996). On an assimilation timestep (which is once
per day) the model "elds are updated using the following equation:

¹.0$%-
/%8

"w¹0!#(1!w)¹.0$%-
0-$

,
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Fig. 12. Time-dependent ramping factor s(t) for data assimilation. The factor increases linearly from 0 at
day 3.5 to 1.0 at day 7.0, with one assimilation timestep per day.

where ¹.0$%- is the model value, ¹0! is the "eld being assimilated, and

w"s(t)*(w.!9
!(w

.!9
!w

.*/
)*e0!),

where e0! is the error "eld of the assimilated "eld described in Section 2.4.2, w
.*/

and
w
.!9

are minimum and maximum weight values (0)w
.*/

)w
.!9

)1), and s(t) is the
time dependent ramping factor (0)s(t))1) shown in Fig. 12. When s(t)"1, the
value of w at observation locations (e0!"0) is w

.!9
and at feature model locations

(e0!"1) is w
.*/

. In simulations assimilating "elds into which data have not been
melded (see Section 3), we use w

.!9
"1 and w

.*/
"1 to allow full and homogeneous

assimilation of the "elds. In simulations assimilating "elds into which data have been
melded, we use w

.!9
"1 and w

.*/
"0.5 to allow full assimilation of "elds where there

is data and partial assimilation of the background estimates. The value 0.5
was arbitrarily chosen to re#ect partial con"dence in the feature model estimates.
The error "elds used are those determined by the objective analysis technique (see
Section 2.4.2).

The assimilated physical variables include temperature, salinity, and velocity (in the
form of zonal and meridional baroclinic velocities and barotropic streamfunction).
Although no observations for velocity are used in this study, the dynamically bal-
anced velocity is assimilated with an error "eld identical to that of the temperature
"eld. All biological variables are assimilated.

The value of s(t) (shown in Fig. 12) allows an assimilation "eld to be ramped in
gradually in order to minimize shock to the model. For example, the observed "eld for
day 7 is gradually introduced into the model over days 4}7. Ramping down s(t) on the
3 days following maximum assimilation (day 7) was also tried, but had adverse e!ects.
It is desired for the correlation between the model and the day-7 assimilation "elds to
be a Gaussian (bell-shaped) curve centered on day 7. It was found that ramping down
(i.e. re-assimilating) the day-7 assimilation "eld on days 8, 9 and 10 persists the model
"elds as they were on day 7. The result is that the correlation between the model and
the assimilation "eld remains very high on days 8}10, and the correlation curve is not
bell-shaped in time. (This persistence also makes the model less prepared on day 11 for
the assimilation of the day-14 "eld than if the model were allowed to evolve freely,
given the physical model has forecast skill; Gangopadhyay and Robinson, 1997.)
Using a saw-toothed shape for s(t) as shown in Fig. 12 allows the correlation to be
bell-shaped, because the model state will naturally decay away from the assimilation
"eld after day 7. Another advantage of this s(t) shape is that the three days following
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Table 4
Model simulations

Run Start day Fields! Rings" Assimilation# Wind forcing"

1 272 FM Y N N
2 279 FM Y N N
3 272 FM Y P N
4 272 FM Y B N
5 272 FM Y P#B N
6 272 FM#data Y P#B N
7 272 FM#data Y P#B Y
8 279 FM N N N

!FM"feature model "elds, dynamically adjusted; FM#data"feature model "elds with data melded in
and dynamicaly adjusted.
"Y"yes; N"none
#P"physical data assimilation; B"biological data assimilation; N"none.

day 7 can be examined to see how the model dynamics are responding to the
assimilated "eld and assimilation procedure.

3. Results

The "rst series of simulations (Table 4, Runs 1}5) were tests conducted to examine
the e!ects of the physical and biological data assimilation methodology on the
simulations. Each of these runs were initialized with dynamically adjusted feature
model "elds (i.e. without BIOSYNOP data melded in), in order to keep them more
idealized so that processes and relationships could be examined more clearly. Runs
6}8 are discussed in Anderson and Robinson (2000). All simulations were run for 10
days. In this paper we focus on the success of the data assimilation scheme; Anderson
and Robinson (2000) discusses the physical and biological processes in detail.

3.1. Runs 1 and 2: No assimilation

Run 1 was initialized with the dynamically balanced "elds for yearday 272 and run
for 10 days with no data assimilation. Fig. 13 shows sea surface temperature, vertical
velocity at 42 m, surface nitrate concentrations, and vertically integrated phytoplan-
kton concentrations on days 7 and 10 of the simulation. Temperature indicates
signi"cant interaction with both warm core rings and cold core rings. Vertical
velocities are most intense at the trough in the center of the domain; high vertical
velocities are also associated with ring-stream interactions. Although nitrate concen-
trations are not particularly enhanced in the central trough, phytoplankton concen-
trations are slightly enhanced there.

Run 2 was initialized with a dynamically balanced realization for yearday 279, i.e.
7 days later than Run 1. As such, days 0 and 3 of Run 2 (shown in Fig. 14) can be
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Fig. 13. Temperature, vertical velocity, nitrate and vertically integrated phytoplankton for days 7 and 10
(yeardays 279 and 282) of Run 1.
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Fig. 14. Temperature, vertical velocity, nitrate and vertically integrated phytoplankton for days 0 and
3 (yeardays 279 and 282) of Run 2.
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compared with days 7 and 10 of Run 1, with Run 1 being considered the `forecasta
and Run 2 being the `validationa suggested by later data. Comparing the Run 1 day-7
temperature "eld with Run 2 day 0 shows that the Gulf Stream in Run 1 is interacting
too strongly with the eastern cold core ring (at i"34, j"14), although the interaction
with the western warm core ring (at i"35, j"35) is expected. Also, the central trough
in Run 1 is pointing more eastward than suggested by the AVHRR data manifest in
Run 2 day 0, and the eastern warm core ring (at i"55, j"40) did not drift westward
as observed.

While Run 1 does a reasonably good job at predicting most of the meander
evolution and the general behavior of the biological "elds, in some places it does
a rather poor job at predicting the location of the Gulf Stream axis, some of the
jet-ring interactions, and their related biological enhancements. For this reason,
simulations with no data assimilation can be de"cient; they can depart from the
observed state. Data assimilation is desirable to keep the simulation on track. In the
next three simulations, the consequences of physical and biological data assimilation
are investigated.

3.2. Run 3: Physical assimilation only

Run 3 is initialized identically with Run 1 (i.e. on day 272), but assimilates the
day-279 feature model "elds (Run 2 day 0) as indicated in Section 2.5, i.e. with
assimilation starting on day 4 and ramping up to 100% on day 7. Only physical "elds
(temperature, salinity, and velocity) are assimilated.

Fig. 15 shows the results of Run 3. The temperature and vertical velocity "elds of
Run 3 day 7 correspond exactly with Run 2 day 0 (Fig. 14), because these "elds were
fully assimilated. The nitrate and phytoplankton values however are higher in certain
places on day 7 in Run 3 as compared to Run 2, viz. phytoplankton in the central
trough at (i"44, j"23) and nitrate near the warm core ring at (i"50, j"46). This is
because the adjustment of the physical "elds during data assimilation makes the
physical front temporarily out of alignment with the biological front, particularly in
places where the physical adjustment is strongest (i.e. where Run 1 day 7 temperature
disagrees with Run 2 day 0). The net result is enhanced cross-frontal transport of
biological quantities at these locations, and consequently falsely enhanced nitrate and
phytoplankton concentrations.

These results suggest that the less frequent the physical data assimilation, the more
out of alignment the biological "eld will be with the updated physical "eld on an
assimilation timestep. This raises the question whether more frequent physical data
assimilation will allow a smoother physical evolution and consequently reduce the
spurious biological response. To test this, a simulation was conducted identical to
Run 3 but with physical data assimilation every 0.5 days, instead of every 1.0 days.
Because the assimilation frequency was doubled, the s(t) values (Fig. 12) were halved
(except for day 7), so that the day-7 "elds would not be brought in too quickly. The
results of this simulation were virtually identical to Run 3, showing no reduction of
the spurious nitrate or phytoplankton concentrations. A second simulation was then
conducted with assimilation every 0.25 days, with the values of s(t) halved again
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Fig. 15. Temperature, vertical velocity, nitrate and vertically integrated phytoplankton for days 7 and 10
(yeardays 279 and 282) of Run 3.
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(except day 7). This simulation showed a signi"cant reduction in the spurious NO
3

values, although the spurious phytoplankton values were only slightly lower. To
adequately investigate higher assimilation frequencies (e.g. 0.1 days or less), assimila-
tion "elds would need to be created more frequently e.g. every 3 days or less, rather
than every 7 days. Because of the signi"cant additional amount of investigation
required, this remains an objective of future work. It therefore remains an open
question whether very high physical data assimilation frequency ()0.1 days) can
reduce the spurious biological response to negligible levels. Clearly an assimilation
frequency of 0.5 days or longer is inadequate in this active region.

3.3. Run 4: Biological assimilation only

Run 4 is similar to Run 3 except with biological rather than physical data
assimilation. All day-279 biological "elds are assimilated (N, P, Z, A and D).

Fig. 16 shows the results of Run 4. The nitrate and phytoplankton "elds of Run
4 day 7 agree exactly with those of Run 2 day 0 (Fig. 14) because these were assi-
milated. However, the temperature and vertical velocity "elds of Run 4 day 7 agree
with Run 1 day 7 (Fig. 13), because they evolve in the same way. The result is that in
Run 4 on day 7 the physical and biological fronts are not aligned. Consequently in the
post-assimilation period, i.e. on day 10 in Run 4, the nitrate and phytoplankton "elds
are spuriously enhanced, due to the spurious cross-frontal transport of biological
quantities. Unlike Run 3, this false enhancement cannot be reduced by more frequent
assimilation. Biological data assimilation without the assimilation of associated
physical features clearly leads to a discrepancy in physical and biological frontal
positions, with disastrous consequences.

3.4. Run 5: Physical and biological assimilation

The "nal simulation in this series is Run 5, which includes both physical and
biological data assimilation. Days 1}4 of this run agree with Run 1, while days 7}10
agree with Run 2 (Fig. 14) as all the "elds are fully assimilated. No signi"cant spurious
e!ects on days 4}7 of the simulation were found resulting from the assimilation
procedure. Thus Run 5 is the ideal simulation, evolving smoothly from our best
estimate of the day-272 "elds to our best estimate of the day-279 "elds.

4. Discussion

4.1. Compatible physical and biological xelds

The net lesson of Runs 1}5 is that simulations with no data assimilation can
easily depart from observed, while having only physical or biological data assimila-
tion can lead to a misalignment of the physical and biological fronts, with
consequently enhanced cross-frontal transport of biological quantities and spuriously
enhanced biological productivity. The best method is to have both physical and
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Fig. 16. Temperature, vertical velocity, nitrate and vertically integrated phytoplankton for days 7 and 10
(yeardays 279 and 282) of Run 4.
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biological data assimilation. This makes the critical issue deriving from the available
data physical and biological "elds for assimilation that are dynamically balanced and
consistent with each other. The topic of deriving such "elds was addressed in Section
2; the importance of the methodology is why it was stressed at such length.

There are two additional problems with assimilating physical data only to drive
a physical}biological model. Physical data assimilation that is not smooth (due to
variability in the assimilated "eld or its error "eld, or disagreement between the
assimilated "eld and the model forecast) may generate spurious vertical velocities (see
Anderson and Robinson, 2000), which may cause a spurious biological response if
biological data are not also assimilated (to keep the biology near observed). Secondly,
good forecast skill of the biological model is unlikely due to uncertainty in parameter
values, parameterizations, initial and boundary conditions, and nonlinearities in the
biological equations.

When only physical data are available, it is therefore desirable to go through the
procedure detailed in Fig. 1 to generate a compatible biological "eld for assimilation
(with weaker con"dence weight). This is reasonable to do because mesoscale
biological features are generally correlated with physical features (Denman and
Abbott, 1994). Similarly, when only biological data are available, it is desirable
to create a compatible physical "eld to assimilate. This is reasonable because
biological distributions are often due to physical processes (e.g. advection).
One way would be to "rst generate the biological "eld, and then use local correlations
with physical properties (from data or previous model output) to generate the
physical "eld. Another way would be to use the biological information on frontal
positions as input to the physical feature model. A crucial property is for the
physical and biological fronts to agree. Yet as physical fronts are not always asso-
ciated with biological fronts and vice versa (e.g. Fasham et al., 1985; Srokosz, 1997), it
is left to the discretion of the modeler to judge when and where such correlations may
be applied.

Note that these conclusions on the necessity of assimilating consistent physical and
biological "elds apply only to forward assimilation techniques (insertion, nudging,
optimal interpolation). The equivalent statement in inverse modeling is to optimize
not only the biological parameters, but also the uncertain physical parameters and the
initial and boundary conditions.

Interestingly the assimilation studies of Najjar et al. (1992) and Anderson and
Sarmiento (1995), who nudged surface ocean phosphate to annual mean concentra-
tions, were largely successful using biological data assimilation only because the
coarse-resolution models had broad property gradients and no temporal variability.
They did not encounter as severe problems with mismatching physical and biological
fronts as we do with the evolving Gulf Stream. This illustrates that data assimilation is
easier at coarse resolution than at mesoscale resolution.

4.2. Generality of scheme

The method outlined in Fig. 1 is a general procedure with details that can be
modi"ed. For example, the objective analysis modules can be excluded (if there is no
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data) and the physical and biological dynamical-adjustment periods can be shortened
(for regions with weak velocities or periods of rapid biological change, respectively).
Other criteria can be used to generate the initial "eld estimates (e.g. climatological
data) and di!erent objective analysis or data assimilation schemes used. Nevertheless,
the basic structure of this procedure for producing consistent physical and biological
"elds from available data should remain the same for most applications and data
types, including satellite-derived data. The methods described here are those we have
found to be most successful for our Gulf Stream simulations.

4.3. Error xeld propagation

The physical error "elds used for assimilation were those determined by the
objective analysis technique (see Section 2.4.2). This ignores the fact that during the
7-day physical dynamical adjustment run (Section 2.4.3), the physical "elds move and
mix, and hence our con"dence in the "elds changes. Future studies will use the Error
Subspace Statistical Estimation (ESSE) method (Lermusiaux, 1997; Robinson et al.,
1998; Lermusiaux and Robinson, 1999), which uses a Monte Carlo method
to propogate the model "eld errors, and then combines model "elds and assimilat-
ion "elds with optimal weights that minimize error in the combined "elds. Here
we simply use the objective analysis error "elds as a "rst approximation, as our
initial objective was primarily to test the impact of the data assimilation in the
simulations.

The biological error "elds used were also those determined by the objective analysis
technique (Section 2.4.5). As with the physical error "elds, we should actually allow
the error "elds to propagate during the dynamical adjustment run. Again, a good way
to estimate the change in the error "elds would be to use a Monte Carlo method,
particularly one that takes into account biological model parameter uncertainty.
Alternatively, the errors of the dynamically adjusted biological "elds could be esti-
mated through a recomparison with the data (i.e. the objective analysis "elds). All of
this is the focus of future work. For the time being, a simple way to include the
uncertainty due to biological model error is to decrease the assimilation weights
w
.!9

and w
.*/

for biological "elds, so that they are assimilated with less con"dence
(i.e. weakly).

4.4. Dynamically adjusted biological xelds

Ideally the dynamically adjusted biological "elds should match the data (with-
in measurement and sampling error). That is, biological model parameters
and parameterizations should be adjusted until such agreement is achieved, parti-
cularly in places where the time rate of change is slow. However, it may not be
possible to match the data (1) if physical structures are absent due to lack of physical
data or coarse model resolution (each of which should be addressed appropriately)
or (2) in places where the time rate of change is fast (e.g. as a consequence of transient
physical events, such as recently outcropped isopycnals that increase surface nutrients
initially but cannot sustain them throughout a 20-day dynamical adjustment run).
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To include such transient data in the "nal dynamically adjusted "elds, two dynamical
adjustment runs may be necessary, "rst a longer one to adjust the initial feature
model estimates, and then a shorter one to dynamically adjust the "elds after the
data have been melded in. Alternatively, the assimilation weights could be
adjusted so that the dynamically adjusted "eld estimates that do not agree with
the data are not assimilated; this would allow the model transient behavior to
dominate.

In the end, it may not be possible to incorporate all the data values within their
observational error bounds. As the goal of the main simulation is to reach a compro-
mise between all the available types of data, assimilation of dynamically adjusted
values is preferable to assimilating exact data values that are not consistent with other
data types.

5. Summary of conclusions

Regarding forward data assimilation techniques:
In physical}biological models using physical data assimilation only, the adjustment

of the physical "eld on an assimilation timestep can lead to temporary misalignment
between the physical and biological fronts, causing spurious cross-frontal #uxes and
consequently spurious biological responses (e.g. enhanced productivity). If only phys-
ical data are available, it would therefore be desirable to generate compatible biolo-
gical "elds and assimilate these as well (although at lower con"dence).

In physical}biological models using biological data assimilation only, there is
little or no feedback to the physics. Physical and biological fronts will generally
become misaligned, causing spurious cross-frontal #uxes and consequently spurious
biological responses (e.g. enhanced productivity). More frequent biological
assimilation cannot correct this. What is needed is to generate and assimilate physical
"elds that can support the biological features. For example, the assimilation of
satellite ocean color data should be accompanied by the assimilation of SST or
altimetry data.

Having both physical and biological data assimilation is the best scenario. To
do this requires generating consistent physical and biological "elds for assimilation.
Here we describe a generally applicable six-step method: (a) initial estimation
of synoptic physical features, (b) melding physical data into these "elds to
obtain the best realtime estimates, (c) physical dynamical adjustment to generate
vertical velocities, (d) initial estimation of mesoscale biological "elds based on
physical}biological correlations, (e) melding biological data into these "elds, and (f)
biological dynamical adjustment with frozen physical "elds to balance the biological
"elds with each other, the model parameters, and the 3-D physical transports. The
generation of these "elds is done in `adjustment spacea, outside of the simulation of
interest (`simulation spacea).

This study demonstrates successful assimilation of synoptic physical and biological
data to reconstruct an observed mesoscale physical}biological event. Assimilation
into a model dynamically adjusts the data, allowing a more powerful process study
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than analysis of the data alone, or simulation alone. This method is generally
applicable for realtime mesoscale physical}biological forecasting (e.g. Srokosz, 1997;
Lozano et al., 1998).
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Appendix A

A.1. The physical model

The Harvard Ocean Prediction System (HOPS) primitive equation model (Lozano
et al., 1996; Robinson, 1996) was used with a 75 by 51 horizontal grid of 15
kilometer resolution. Hybrid vertical coordinates were used (Lozano et al.,
1994; Haley, 1997); 16 #at levels extended to a depth of 336 m, with 14
terrain-following levels beneath. Level thicknesses increased with depth from 6 m
at the sea surface to 796 m for the thickest bottom level. Realistic bathymetry
was used, with the exception that depths less than 1300 m were deepened to
1300 m and depths greater than 4600 m were shallowed to 4600 m. The upper limit
was imposed so that the terrain-following levels would not go to extremely small
thicknesses upon the shelf; the bathymetry was shallowed to 4600 m for consistency
with previous simulations (e.g. Gangopadhyay et al., 1997). A timestep of
15 min was used.

The dynamics are governed by the primitive equations under the hydrostatic,
Boussinesq and rigid-lid approximations. Subgridscale horizontal mixing of tracers
(temperature, salinity and biological quantities) and momentum was parameterized
using Laplacian di!usion with a coe$cient of 250 m2/s, appropriate for cross-Gulf
Stream di!usivity at this scale (Bower et al., 1985). Horizontal mixing of vorticity was
parameterized by applying a fourth-order Shapiro (1970) "lter once every timestep,
which removes any unresolved gravity waves and the small scales created by the
geostrophic turbulence enstrophy cascade (Rhines, 1979; Robinson and Walstad,
1987). Vertical mixing of momentum and tracers was parameterized by the Richar-
dson-number dependent scheme of Pacanowski and Philander (1981). Convective
mixing was handled by using a local vertical di!usivity of 50 cm2/s in instances of
local gravitational instability.
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Persisted boundary conditions were used for momentum, vorticity and streamfunc-
tion. Persisted boundary conditions were also used for temperature and salinity,
except on the out#ow (eastern) boundary, where values were set equal to that of the
"rst interior point each timestep.

Regarding surface forcing, in Runs 1}6 and 8 no surface heat #ux or wind stress was
applied, because we wanted to isolate changes associated solely with Gulf Stream
meandering and the data assimilation scheme. In Run 7, 12-hourly ECMWF winds of
2.53 spatial resolution were applied for the appropriate dates of the simulation (21
Sept}6 Oct 1988). An idealized shortwave radiation #ux was applied, which was in the
shape of a half-sinusoid with a noontime maximum of 707 W/m2. In addition to this
a constant cooling of !225 W/m2 was applied, so that the daily net heat #ux
integrated to zero, with heating during the day and cooling at night. No surface water
(salt) #ux was applied.

In simulations without surface forcing (Runs 1}6 and 8), a constant mixed layer
depth of 30 m, typical of late summer conditions, was prescribed over the entire
domain. This was done by specifying a vertical di!usivity of 50 cm2/s between 0 and
30 m. In simulations with surface forcing (Run 7), the Large et al. (1994) mixed-layer
scheme was "rst tried, but found to be computationally expensive. Instead, a simple
mixed layer model was used, described as follows, which is based on the heart of the
Large et al. (1994) scheme. First, at each location the mixed layer depth was estimated
as that depth at which the change in density with depth became greater than
0.003 kg/m4. Second, a `targeta mixed layer depth was estimated at each location as

Z
5!3'%5

"G
Z

E,.!/
if B)0,

min(Z
E,.!/

,Z
M0/*/vO"6,)07

) if B'0,

where

Z
E,.!/

"kuH/f,

Z
M0/*/~O"6,)07

"2mu3H/B,

uH"Jq/o
0
,

where B is the surface buoyancy #ux (positive for heating), q is the local wind stress,
o
0

is the density of seawater, f is the Coriolis parameter, k is a proportionality
constant of 0.3 (tuned empirically), and m is a proportionality constant of 1.25 (Niiler
and Kraus, 1977; Large et al., 1994). If Z

5!3'%5
is less than the mixed layer depth,

a vertical di!usivity of 50 cm2/s was applied between 0 and Z
5!3'%5

meters. If Z
5!3'%5

is
greater than the depth of the next level below the mixed layer depth, the vertical
di!usivity of 50 cm2/s was applied to the depth of that next level in order to entrain it
into the mixed layer. In this way, the mixed layer depth was primarily set as Z

5!3'%5
,

with a retarding e!ect on mixed layer deepening depending upon the local strati"ca-
tion.

This simple mixed layer scheme, in combination with our vertical mixing scheme
and convection scheme, has shown to give good results under a variety of forcing
conditions.
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A.2. The biological model

The biological model (Fig. 3, Tables 1}3) is of the nitrogen cycle. In the equations,
greek and lower-case roman letters denote constants (parameters). Upper-case roman
letters denote "elds that vary in space and time (variables). The nitrogen cycle is
closed, and the model is applied to the entire water column. It is important that
remineralization processes be included even in the euphotic zone, because the major-
ity of daily biological production is recycled there.

This biological model is an expansion of the four-component model of McGil-
licuddy et al. (1995). As such, several equations in Table 3 are the same (Eqs. (1)}(3)
and (7) (8)). The primary changes were to modify the phytoplankton growth equations
so that productivity in the summertime Sargasso could be well simulated (Eqs. (4)}(6)),
and to explicitly include non-living organic nitrogen (Eqs. (9)}(11)).

Let us "rst discuss the phytoplankton growth equations. The nitrate limitation
factor (Eq. (4)) was modi"ed from its previous de"nition (Fasham et al., 1990) to
ensure that Q

1
#Q

2
)1, at the expense of nitrate uptake if ammonium is plentiful.

A depth-dependent carbon-to-chlorophyll ratio was introduced (Eq. (5); Malone et al.,
1993) as it is important for the productivity of the Sargasso deep chlorophyll
maximum (Doney et al., 1996). It was found that in the Sargasso at 40}60 m depth,
which in summer is both light- and nutrient-limited, multiplying the factors
(Q

1
#Q

2
)¸

0
gives a primary production estimate much lower than observed; we

therefore use a min(Q
1
#Q

2
,¸

0
) formulation (Hurtt and Armstrong, 1996; McClain

et al., 1996) which accurately represents Blackman's law of the minimum. The proper
division of this into nitrate and ammonium uptake is then min(Q

1
#Q

2
,¸

0
)Q

1
/

(Q
1
#Q

2
) and min(Q

1
#Q

2
,¸

0
)Q

2
/(Q

1
#Q

2
) respectively, which is re#ected in Eq.

(6) and Fig. 3. Eq. (6) also includes the maximum speci"c growth rate (g C (g Chl h)~1),
the carbon-to-chlorophyll ratio, and a temperature dependence factor (Sarmiento et
al., 1993; normalized to 223C) included on account of the strong temperature gradient
across the Gulf Stream.

Let us now discuss the modeling of PON and DON. Preliminary simulations were
carried out using a single detrital component, but this was found to be inadequate.
Detrital sinking rates during a bloom can be up to 1000 m day~1 (Fowler and
Knauer, 1986), while in oligotrophic regions detrital sinking rates are much lower and
the dominant role may be played by DOM (Carlson et al., 1994). Previous studies
(Fasham et al., 1993; Prunet et al., 1996a, b) have shown that a model's detrital sinking
rate is of enormous importance, directly in#uencing recycled production rates. We
therefore use two classes of non-living organic nitrogen, F which sinks fast (100#
meters per day) and which plays an important role in transporting bloom material,
and D for which the sinking rate is essentially negligible relative to vertical mixing and
biological rates, to represent the two ends of the spectrum. D includes semi-labile
DON and non-living suspended PON, which are lumped together because (a) their
function in the ecosystem is essentially the same (they are passively advected and
di!used, and ultimately remineralize to nutrients), (b) there is no BIOSYNOP PON
or DON data to validate these variables, and (c) there is signi"cant uncertainty in
what values to use for suspended PON and labile DON concentrations and re-
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mineralization timescales (see Section 2.4.4). Consequently, modeling suspended PON
and DON seperately would create mathematical redundancy in the equations, mak-
ing the model di$cult to tune, while combining them results in a better-constrained
set of equations.

It was found critical to have the fraction of mortality and excretion going into F and
D to vary with production. In oligotrophic regions approximately 5% of daily
primary production goes into fast sinking particles while in high productivity regions
50% may be more typical (Eppley and Peterson, 1979). We parameterize this frac-
tionation through the function E(P) (Eq. (9)), where we use dependency on phytoplan-
kton concentration rather than production rate to avoid values of zero at night. In
retrospect, it may have been better to use a maximum value of 25% (Wefer, 1993)
rather than 50%; see Anderson and Robinson (2000).

The next issue is how to model the remineralization of F and D. We use "rst-order
kinetics for remineralization of D to A, and nitri"cation of A to N. However,
a practical di$culty was found with modeling the F pool explicitly. As discussed in
Section 2.4.6, we desire the biological components to reach near-equilibrium concen-
trations within a short spin-up period. Using F with a sinking rate of 100 m per day
would require over 46 days to stabilize (because the water column is 4600 m deep),
which is undesirably long. Instead F is modeled as sinking and remineralizing
instantaneously (e.g. Anderson and Sarmiento, 1995), representing the extreme limit of
the sinking rate spectrum.

The remineralization pro"le (R) of F is determined as follows. F is produced on each
model level (as EM), and it is assumed that the sinking F #ux decreases with depth
with an e-folding scale. Observations (Martin et al., 1987) suggest that the e-folding
scale is approximately 100 m in the upper ocean and 1000 m in the deep ocean, i.e.
essentially proportional to depth itself. This suggested the form for Eq. (10), where the
adjustment factor of 1.15 allows remarkable agreement with the Martin et al. (1987)
#ux pro"le. This equation has a distinct advantage over that of Martin et al. (1987)
because it can be applied to material produced at an arbitrary depth, i.e. it does not
depend upon the #ux at 100 m. The remineralization of F sinking out of a given model
box into the levels below is then determined as the vertical divergence of this #ux (Eq.
(11)). F reaching the sea#oor is remineralized instantaneously in the bottom box.

Simulations were conducted that also included zooplankton grazing of D (i.e.
suspended PON). This was found to be of no qualitative and little quantitative
importance because the distributions of Z and D essentially mimic phytoplankton; the
net e!ect of including this process was to modify the net remineralization rate of D.
Therefore, we have simpli"ed the model to control the D breakdown rates explicitly.
Bacteria have been neglected, primarily because we have no data for assimilation. As
with zooplankton, bacterial processes of remineralization are parameterized directly.

Recently, it has been suggested that nitrogen "xation may play an important role in
the Sargasso Sea in summertime (Michaels et al., 1996; Gruber and Sarmiento, 1997).
Estimates are still uncertain, ranging four-fold 0.20}0.88 mmol N m~2 d~1.
However, the proposed nitrogen "xation is not thought to occur in the 14C bottle
incubations that we use for model validation, but due to vertically migrating
Trichodesmium. Furthermore, the nitrogen "xation is only a minor fraction of primary
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production (2.5}3.8 mmol N m~2 d~1; Michaels et al., 1994b); our study sets out to
explain how this production is maintained despite negligible NO

3
. In this study

N
2
"xation is therefore ignored. As the various pools of nitrogen in the mixed layer are

not changing rapidly during summer, any new nitrogen brought in by N
2
"xation must

be balanced by an equivalent export. As such any production in the Sargasso due to
nitrogen "xation and the balancing export is in addition to that estimated in this study.

Some biological model parameter values (Table 2) were taken from the literature,
particularly those determined for BIOSYNOP by Lohrenz et al. (1993); others were
tuned in sensitivity studies as described in Section 2.4.4. The low k

1
and k

2
values are

supported by experiment (Harrison et al., 1996) and are necessary to obtain the
observed growth rates given the low mixed-layer NO

3
and NH

4
concentrations

()0.01 lM).
A PAR #ux of 45% of the shortwave radiation #ux was used to drive biological

production. It was found important to include the daily cycle of PAR because of its
complex impact on production rates and the depth of the chlorophyll maximum.
Unfortunately available PAR data was sparse. In sensitivity tests (see Section 2.4.4),
it was determined that the noontime PAR #ux must be in the vicinity of 318 W/m2

(which is in good agreement with the data) for the subsurface Chl maxima in the Slope
and Sargasso waters to be at their observed depths (higher light intensity allowing
deeper Chl maxima).

Orlanski-type boundary conditions (Stevens, 1990; Lermusiaux, 1997; Nicolas et
al., 1997) were used for biological tracers along the in#ow (western) boundary. On all
other boundaries, biological tracer values were set equal to that of the "rst interior
point. Spurious vertical velocities were often generated at the boundaries in places of
high horizontal velocity (shear). To reduce the impact of these, the vertical advection
term for biological tracers was set to zero along the boundaries, except for the out#ow
(eastern) boundary, where it was set equal to that of the "rst interior point. The
boundary regions are not regarded as a believable part of our simulations; they are
primarily bu!er zones to protect the interior solution.
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