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Abstract

Considering mesoscale variability in the Strait of Sicily during September 1996, the four-di-
mensional physical fields and their dominant variability and error covariances are estimated and
studied. The methodology applied in real-time combines an intensive data survey and primitive
equation dynamics based on the error subspace statistical estimation approach. A sequence of
filtering and prediction problems are solved for a period of 10 days, with adaptive learning of the
dominant errors. Intercomparisons with optimal interpolation fields, clear sea surface temperature
images and available in situ data are utilized for qualitative and quantitative evaluations. The
present estimation system is shown to be a comprehensive nonlinear and adaptive assimilation
scheme, capable of providing real-time forecasts of ocean fields and associated dominant
variability and error covariances. The initialization and evolution of the error subspace is
explained. The dominant error eigenvectors, variance and covariance fields are illustrated and their
multivariate, multiscale properties described. Five coupled features associated with the dominant
variability in the Strait during August–September 1996 emerge from the dominant decomposition
of the initial PE variability covariance matrix: the Adventure Bank Vortex, Maltese Channel Crest,
Ionian Shelf Break Vortex, Strait of Messina Vortex, and subbasin-scale temperature and salinity
fronts of the Ionian slope. From the evolution of the estimated fields and dominant predictability
error covariance decompositions, several of the primitive equation processes associated with the
variations of these features are revealed, decomposed and studied. In general, the estimation of the
evolving dominant decompositions of the multivariate predictability error and variability covari-
ances appears promising for ocean sciences and technology. The practical feedbacks of the present
approach which include the determination of data optimals and the refinements of dynamical and
measurement models are considered. q 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

An essential activity in oceanography consists of estimating and studying the
evolution, in space and time, of the physical, biological and geochemical properties of

Ž .the sea e.g., Defant, 1961 . As in classical mechanics, one is then interested in the
ocean fields, i.e., the functions of space and time characterizing the considered ocean
state. In this paper, some simple steps are taken towards the extension of this
fundamental view to the estimation and study of the evolution, in space and time, of the
statistical properties of real ocean fields. For multivariate, multiscale and nonhomoge-
neous issues, the task is challenging. As a first endeavor, the investigation is restricted to
the four-dimensional physical fields, a classic interest, and to the four-dimensional
covariances of these fields. The methodology employed for this investigation combines

Ž .real data and dynamics based on the Error Subspace Statistical Estimation ESSE
Ž .approach Lermusiaux, 1997 . It was exercised in real-time during the operation Rapid

Ž .Response 96 RR96 , considering mesoscale variability in the Strait of Sicily during
August and September 1996. The real-time statistical estimation consisted of a series of

Ž .prediction and filtering problems Jazwinski, 1970 and the word estimation in this paper
is used in this sense.

Ž .The North Atlantic Treaty Organization NATO operation RR96 was designed to
Ž . Ždemonstrate a rapid environmental assessment REA in a naval context Pouliquen,

.1997; Sellschopp and Robinson, 1997 . Ocean surveys were carried out with several
ships continuously sampling the region and aircrafts rapidly deploying temperature vs.

Ž .depth probes AXBTs . The main Harvard participation in RR96 consisted of the
real-time nowcasting and forecasting of the physical fields, using the Harvard Ocean

Ž .Prediction System HOPS, e.g., Robinson, 1996 . Several two-way nested sub-domains
were employed for higher resolution estimation in coastal areas of specific interest. The
products included primitive equation forecasts and data assimilation using Optimal

Ž .Interpolation OI , with real-time atmospheric forcing and acoustic computations. An
Ž .overview of the experiment and a discussion of the Atlantic Ionian Stream AIS

Ž .variability in the Strait is given in Robinson et al., 1998b .
The intensive data of RR96 and the calibrated primitive equation model of HOPS

provided an ideal test situation for ESSE. The physical fields, their variabilities,
uncertainties and corresponding dominant covariances, were in fact predicted in real-time.
Comparisons with the OI scheme were carried out, and, for the first time, several

Žoperational and scientific ESSE products were made available to NATO W.G. Leslie,
.personal communication . Fig. 1 is one of these products, especially important for its use

Ž .in real-time adaptive sampling. Panel a is the surface temperature on Sept. 18 after
Ž .ESSE assimilation of hydrographic data sampled on that day. Panel b is the expected

Ž .mesoscale error field of the assimilated data. Panel c is the error standard deviation of
Ž .the map of Panel a : it is obtained from the diagonal of the a posteriori error covariance

Ž .matrix. After the assimilation, the largest surface temperature uncertainties Panel c are
Ž .found in two regions: one 35–378N, 12–148E is mainly associated with the so-called

Ž . Ž .Maltese Channel Crest feature Section 1.1 and the other 37–388N, 15–178E with
meanders of the AIS off the eastern coast of Sicily. For optimal sampling, these
locations of high variability appear in most need of future temperature probe gathering.
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Ž . Ž .Fig. 1. a Surface temperature map 8C for Sept. 18 after ESSE assimilation, overlaid with surface velocity
Ž . Ž . Ž .vectors scale arrow is 0.25 mrs ; b Normalized expected error 0–1 of the surface temperature mapped

Ž . Ž . Ž .from the new Sept. 18 observations; c Root mean square error 8C of the estimate shown in a . Before data
assimilation the error range was "1.58C. Real-time field and error forecasts were made at Harvard using
ESSE with the data provided by Sellschopp et al., SACLANTCEN.

In general, such capabilities allow the use of optimization schemes to estimate data
optimals, i.e., the time-variant sampling patterns and sensor types which maximize the
decrease of errors. For more on such practical results and on the parameters of the

Žreal-time ESSE experiments elapsed-times, parallel networking, dynamical and mea-
. Ž .surement models, etc , we refer to Lermusiaux 1997 .

The present data-driven estimation in the Sicily Channel concentrate on RR96
between Sept. 15 and Sept. 24. The main purpose of this paper is to report the estimation
and study of the physical fields and their dominant variability and error covariances.
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Since this is a first endeavor with real data, some time is spend illustrating the
estimation methodology. The scientific and technological results are discussed and
studied along the way, as they are obtained. The advances made and the corresponding
opportunities are summarized at the end. The presentation is intended to show that
analyzing the evolution of the dominant decomposition of covariance matrices is very
valuable for many reasons, ranging from the elucidation and modeling of real ocean
processes to the efficient and objective design of observational strategies.

The organization of this paper is as follows. Section 1.1 briefly overviews the
regional features and scales of variability. Section 2 deals with the estimation parame-
ters. Section 3 describes and analyzes the results of the ten days of nonlinear estimation.
The initialization of the error subspace is presented in Section 3.1. Several features
associated with the dominant variability in the Strait during RR96 are identified. The
estimation with predictions of the fields and dominant error covariances is studied in
Section 3.2. The predictability error eigenvectors obtained are shown to be valuable for
organizing and describing the variations of variability in the region. For quantitative and
qualitative evaluations, intercomparisons with OI fields, clear SST images and available
in situ data are carried out. Section 4 consists of a summary and conclusions. The
Appendix defines the notation frequently used and overviews the machinery of the
ESSE scheme employed.

1.1. DescriptiÕe oÕerÕiew of the regional features and scales of Õariability

Ž .The Strait of Sicily Fig. 2 separates the Western from the Eastern Mediterranean
basins. The topography is complex, with the large and shallow Tunisian and Sicilian

Ž . Ž .shelves above 200 m surrounding a narrow, double-sill trench 400 m south of Malta
Ž .Island, and a deeper basin up to 1000 m south of the Adventure Bank, between the

Pantelleria and Malta Islands. Past the Ionian shelfbreak, the slope is steep, almost
oriented north–south along 16E. This region is referred to as the Ionian slope.

A recent description of the general surface-intensified circulation in the Eastern
Ž .Mediterranean and Strait of Sicily is given in Robinson et al. 1991 . In the Sicily

ŽChannel, the fresh modified Atlantic water MAW, in 1996, ;37–37.8 PSU and
. Ž .;16–248C inflows in the surface layer ;0–150 m from west to east, mainly by

advection within the AIS. It was found during RR96 that within the Strait in summer
conditions, the meanders of the AIS are mainly associated with surface thermal
structures. As shown on Fig. 3, the free jet enters the Strait southward, along the western
side of Sicily. It flows past Pantelleria on the north, bears northwestward around the

Ž .Adventure Bank Vortex ABV , then turns back southeastward in the Maltese Channel
Ž . Ž .Crest MCC , to go around the Ionian Shelf Break Vortex IBV . These three features

Ž .were subjectively identified during RR96 and named by Robinson et al. 1998b . Past
the IBV, the AIS flows off the shelf into the upper western Ionian Sea, possibly
bifurcating and breaking off into several streams. Interestingly, the present real-time
study objectively confirms all of these independent findings. Another result is that two
other features associated with the dominant variability are identified.

The main complement to the surface MAW exchange is the deep outflow, from east
Ž . Žto west, of the salty modified Levantine intermediate water MLIW . The MLIW in
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Ž .Fig. 2. Panel a shows the etopo5 topography of the region studied. The numbers indicate respectively,
Ž . Ž . Ž . Ž . Ž .Pantelleria Island 1 , Malta Island 2 , Sicily 3 and Tunisia 4 . The i ’s indicate topographic features: the

Ž . Ž . Ž . Ž . Ž .Ionian slope i , Tunisian shelf ii , Adventure Bank iii and Maltese plateau iv . Panel b is the bottom
topography at tracer grid points employed in the PE numerical model.

.1996, ;38.8 PSU and ;14.28C enters the Channel usually within the sills south of
Malta, and slowly flows out the Strait, into the western basin. The MLIW core is
commonly found around 250–300 m. The present results confirm these facts and clearly
indicate that the deep MLIW variability can influence the variability of the surface-in-
tensified features.
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Fig. 3. Satellite SST distribution for August 25, 1996, with a cartoon of the summer surface circulation
Ž .features identified during RR96 by Robinson et al. 1998b . The picture was downloaded from the real-time

unclassified RR96 World Wide Web server of the SACLANTCEN.

Ž .The variability in the Strait occurs at several scales Robinson et al., 1998b . The AIS
Žinteracts along its path with various energetic mesoscale events e.g., eddy formation,

. Žfilaments, unstable meanders , with time-scales of order of days Moretti et al., 1993 and
.references therein . Weather patterns and associated winds can influence the internal

Ždynamics, as exemplified by the cold upwellings along the southern coast of Sicily Fig.
.3 . At higher frequencies, the gravity and Ionian shelf waves, the inertial component and

tidal effects are important. Finally, mixing events between the double flow system occur,
Ž .which has lead to defining multiple water masses Warn-Varnas et al., 1998 .

2. Estimation parameters

2.1. Data

The hydrographic observations collected from the beginning of RR96 until Sept. 15
are illustrated on Fig. 4a. This is the data set utilized to estimate the initial ocean fields

Ž .and their error subspace on Sept. 15 Sections 2.3 and 3.1 . It contains 926 hydrographic
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Ž .Fig. 4. Panel a : Coordinates of hydrographic profiles collected during the period August 12–September 15,
1996 of the Operation Rapid Response 96. This is the data set employed in the initialization for Sept. 15, as

Ž .provided by Sellschopp et al., SACLANTCEN. Panels b–d : Coordinates of temperature vs. depth probes
Ž .collected by three flights of a NAVOCEANO detachment. Panel b shows the probe locations for the flight of

Ž . Ž .Sept. 18, Panel c for Sept. 22 and Panel d for Sept. 24, 1996. The sampling strategies on Sept. 22 and Sept.
24 were constrained by naval purposes.

Ž . Ž .profiles: 135 X CTDs and 791 A XBTs. The initial fields and errors are then evolved
until Sept. 24, assimilating the subsequent observations as they become available
Ž .Section 3.2 . Fig. 4b–d show the surface location of these new hydrographic probes.
They consist of AXBT flights designed by Harvard and the SACLANT Center, using a
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Ž .subjective adaptive sampling strategy Robinson, personal communication . Presently,
Ž .the flight of Sept. 18 and that of Sept. 22 are assimilated Fig. 4b–c . The flight of Sept.

Ž .24 Fig. 4d is only utilized to evaluate the estimation methodology.

2.2. Dynamical model

Ž . ŽThe dynamical model is the nonlinear primitive equation PE model of HOPS e.g.,
. Ž .Robinson, 1996 , in its rigid-lid configuration. The state variables are the dynamical

tracers, the temperature T and salinity S, the barotropic transport stream function c , and
Ž . Ž . Žthe zonal x and meridional y internal velocities, u and Õ, respectively see Appendixˆ ˆ

.A for notations . External velocities are obtained from usy= nc e rH, where theh z
Ž .operator= n P is the horizontal curl, e the vertical and H the local depth. The valuesh z

of the numerical and physical parameters used in this study are listed in Table 1. The
horizontal resolution is 9 km. The domain extension is 630 km in the zonal and 459 km

Ž . Ž .in the meridional direction, respectively Fig. 2 . In the vertical z , 20 levels are
Ždistributed based on a ‘‘double sigma’’ transformation Lozano et al., 1994; Sloan,

.1996 . This is a piecewise linear transformation which uses two ‘‘topography-following’’
Ž .sigma systems: one from the surface to an intermediate depth h x, y , the other fromc

h to the bottom. For suitably chosen h , this maintains relatively flat levels above h inc c c

both the shelf and deep ocean. The dimension of the state vector is 299,052. The time
step was bracketed to 450 s.

Horizontally, the parameterization of the subgrid-scale mixing processes and filtering
Ž .of numerical noise is based on a Shapiro filter Shapiro, 1970 . Its parameters are the

order p, number q of application per time step and number r of time steps in between
Ž .applications. For each state variable Table 1 , the values p, q, r were determined based

on curves of effective diffusivity as a function of horizontal-scales, and on a compro-
mise between smoothing computational noise and allowing physical instabilities to occur
Ž .Lermusiaux, 1997 . The vertical mixing is a Laplacian mixing, with fixed eddy

Table 1
Dynamical model parameters

Numerical Parameters Centroid latitude and longitude 36.258N, 148W
Ž . Ž .Domain extension 630 km x , 459 km y

Grid resolution 9 km
Ž . Ž . Ž .Grid size 71 x , 52 y , 20 levels, double sigma

Time step 450 s
State vector size ns299,052

Physical Parameters Shapiro filter F , F : 1611; F , F : 411; F : 211u Õ T S v t

Ž . Ž .Open bond condition u,Õ: ORI ; T , S: ORI ;ˆ ˆ
Ž . Ž .c : ORE ; v : ORE1r2 t 1r2

2 y1 evet 2 y1Vertical mixing A s0.5 cm s , A s50 cm sv v
2 y1 evet 2 y1K s0.1 cm s , K s50 cm sv Õ
y3Drag coefficient C s2.5=10d

Rayleigh coastal friction t s7200 s, L s9 kmc c

Rayleigh bottom friction t s3600 s, H s2 bottom levels, with H F50 mb b b
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viscosity A s0.5 cm2 sy1 and diffusivity K s0.1 cm2 sy1. Convective adjustment isv v

utilized when the water column is statically unstable, with a vertical viscosity Acvct andv
cvct 2 y1 Ž .diffusivity K both equal to 50 cm s . At the open boundaries Lermusiaux, 1997 ,v

Ž . Ž .Orlanski radiation ORIrORE conditions Orlanski, 1976 were preferred for all
variables. Across coastlines, the normal flow and tracer flux are set to zero. Along
coastlines, the tangential flow is slowed down at the coast, using a Rayleigh friction of
relaxation time t s7200 s and Gaussian decay horizontal-scale of one grid point,c

L s9 km. This condition is a ‘‘damped free-slip’’. At the bottom, a dynamic stressc

balance is applied to the momentum equations, with a drag coefficient C s2.5=10y3.d

An additional Rayleigh bottom friction is employed to control possible numerical error
growth in the barotropic transport and parameterize a simple bottom boundary layer for
momentum. Its parameters are a relaxation time t of 3600 s and Gaussian decayb

vertical-scale H of two bottom levels, with H F50 m. Although atmospheric forcingsb b

were used in operations, during the period considered here, they are not the main source
of variability. For simplicity, the wind-stress and surface buoyancy flux are thus set to
zero; the internal dynamics is the main interest.

2.3. Field initial conditions

Ž .The gridded fields are initialized by objective analysis OA and PE adjustment,
Ž .using the data gathered up to Sept. 15 Fig. 4a . For better stability and accuracy of the

initial fields, the salinities of the AXBTs are estimated. In the Strait of Sicily, this is
challenging because there is no clear TrS relationship and the TrS distribution varies in

Ž .all dimensions x, y, z, t . All of the procedures investigated employed the available
Ž . ŽCTD data Fig. 4a as a pool of reference TrS profiles. The method selected e.g.,

.Lermusiaux, 1997 computes the salinity of a given AXBT using a weighted average of
the reference salinities. The weights in the average increase with the similarity between
the location, profile shape, depth and temperature range of the AXBT data and reference
T data. Constraints based on the reference TrS diagram are also imposed. The resulting
926 TrS profiles are first gridded on flat levels using a two-scale horizontal OA. The

Ž .first stage maps the large-scales subbasin-scale tracer fields, the second adds the
mesoscale correction to the subbasinscale estimates. The associated error correlation is
the second derivative of an isotropic Gaussian. It has been commonly used in the

Ž .Mediterranean e.g., Robinson and Malanotte-Rizzoli, 1993 . The measurement error
covariance matrices are assumed diagonal, with constant non-dimensional variance.
Table 2 summarizes the main parameters.

A first-guess at the initial flow conditions is computed assuming geostrophic balance,
with a level of no motion at 180 m. The nonlinear momentum equations are then
integrated from this first-guess, keeping the objectively analyzed temperature and
salinity fixed. This integration is usually continued until the mean kinetic energy
stabilizes around a plateau, without rapid changes. This procedure is called an adjust-
ment PE integration and the resulting initial fields are said PE-adjusted. The adjust-

Ž .ments at play are, in order of importance: i the generation of the deviation between the
inviscid, linear, depth-integrated PE flow and the first-guess, depth-integrated flow in
geostrophic balance from a flat level of no motion, here at 180 m. This process is a joint



( )P.F.J. LermusiauxrDynamics of Atmospheres and Oceans 29 1999 255–303264

Table 2
Parameters of the tracer objective analyses

Horizontal grid resolution 9 km
18 flat levels 0.5, 15, 30, 45, 60, 90, 120, 170, 220, 270, 320,

750, 1400, 1600, 1800, 2000, 2250, 4000 m
Subbasin-scale zero-crossings 400 km
Subbasin-scale decorrelation scale 150 km
Mesoscale zero-crossings 50 km
Mesoscale decorrelation scale 30 km
Mesoscale time decorrelation 3 days

Ž . Ž .Subbasin-scale historical data error variance 0.2 non-dimensionalized within 0 to 1
Ž . Ž .Mesoscale synoptic data error variance 0.1 non-dimensionalized within 0 to 1

effect of baroclinicity and relief, which, by conservation of mass, induces vertical
Ž .velocity adjustments at depths. As pointed out by Cane et al. 1998 and anticipated by

Ž .Mertz and Wright 1992 , it should not be understood in the sense of the classic
Ž .‘‘JEBAR term’’, which does not account for all topographic effects; ii the diffusion of

Ž .momentum surface and bottom diffusions, coastal stresses, eddy viscosities , in accord
with the specifics of the fixed density field. This process includes the fast adjustment
Ž . Ž .days to a momentum bottom boundary layer model MacCready and Rhines, 1993 ,

Ž .which here dominates the slow years pressure compensation of Mellor and Wang
Ž .1996 since the first-guess geostrophic velocities are already small at depths; and

Ž .finally, iii the adjustment of the momentum nonlinearities. The adjustment PE integra-
tion is not a search for a steady state. It is only analogous to a ‘‘Picard integration’’
Ž .Garabedian, 1964 in the sense that it reduces the time-rates-of-change towards values
acceptable for a smooth, but high Reynolds number, PE dynamical regime.

The initial PE adjusted velocities and corresponding objectively analyzed tracers, are
shown on Fig. 5. One recognizes the features described in Section 1.1. The AIS is
clearly visible on the total velocity map, with several meanders and mesoscale eddies
along its path, e.g. two cold eddies starting to pinch off the IBV. The PE adjusted
barotropic transport through the Strait on Sept. 15 is estimated to about 0.7 Sv. The
dominant uncertainties of these fields, in part due to data errors and environmental
noise, are estimated in Section 3.1.

2.4. Assimilation scheme

In this study, the Bayesian approach is approximated by minimum error variance
principles. To carry out the data-driven forecasts in real-time, filtering problems are
solved: data are melded with the forecast as they become available, without correcting
past estimates based on future observations. The AXBT data with estimated salinity
Ž .Sections 2.1 and 2.3 are assimilated once, on the day they are observed. The present
ESSE scheme and its parameters are presented in Section 2.4.1. To evaluate or
benchmark the ESSE fields, an OI scheme is utilized. It is described in Section 2.4.2.

Ž .For recent comprehensive data assimilation treatises, we refer to Daley 1991 , Ghil and
Ž . Ž . Ž . Ž .Malanotte-Rizzoli 1991 , Bennett 1992 , Sundqvist 1993 , Evensen 1994 , Cohn and

Ž . Ž . Ž . Ž .Todling 1996 , Malanotte-Rizzoli 1996 , Wunsch 1997 and Robinson et al. 1998a .
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Fig. 5. Surface initial conditions for September 15, 1996. The salinity and temperature fields are obtained by
objective analysis. The internal velocity and barotropic transport stream function are computed by adjustment
PE integrations starting from velocities in geostrophic balance.

2.4.1. ESSE scheme
The present estimation approach reduces the error statistics to multivariate, time-

Ž .variant error subspaces ESs . Its geophysical motivations and rationale are given in
Ž . Ž .Lermusiaux, 1997 and Lermusiaux and Robinson, 1998 . In the minimum error
variance context, the consistent ESs are characterized by the dominant eigendecomposi-
tions of error covariance matrices, or in other words, by dominant error empirical

Ž .orthogonal functions EOFs and coefficients. At assimilation times, the data and
forecast are then combined by minimizing the a posteriori variance in the ES forecast, in
accord with the full dynamics and past measurements, and their respective dominant
uncertainties. The four-step algorithm employed to carry out this estimation is summa-

Ž .rized in Appendix A. The parameters of the melding measurement model , adaptive
error learning and forecast steps are given next. The ES initialization is described later in
Section 3.1.
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Ž2.4.1.1. Measurement model parameters. The measurement model parameters Section
.A.2 are the operator C and error covariance matrix R. Presently, the TrS profiles are

first mapped onto the PE model levels by vertical linear interpolation. The matrix C then
bilinearly interpolates the tracer forecast onto these profile-level intersections, or so-called

w xdata-points. The measurement error co-variance matrix Rs r is assumed diagonal, ofi j

elements r a function of the internal dynamics, with a time and depth dependenti i

amplitude:

r Õ z ,t ss Õ 2
t qe Õ t s Õ 2

z ,t , 1Ž . Ž . Ž . Ž . Ž .i i r

where the superscript Õ specifies the measured variable, t is the time and z the vertical
Ž . Õ Õ 2

coordinate. In Eq. 1 , r is assumed to consist of two uncorrelated components: s ,i i

which accounts for the precision of the sensor utilized, human errors and forward
interpolation errors; and the environmental noise, here estimated by e Õ s Õ 2

, where s Õ 2

r r

is the internal, residual variability variance of the field Õ and e Õ is a factor to scale
noise variances. The present values of s Õ were estimated to 0.038C for T profiles and
to 0.01 PSU for S profiles. The comprehensive computation of the environmental noise
is challenging. It often involves the estimation of the internal wave field and sub-mesos-

Ž . Žcale phenomena Turner, 1981; Munk, 1981 from larger scale data e.g. Flierl and
. Õ 2 Ž .Robinson, 1977 . Several approaches for estimating s z,t of the 20–35 kmr
Ž .resolution data Fig. 4b–d were tested, but the model chosen is still a simple one. For

Õ 2 Ž .initial conditions, s z,0 at a given depth is set to the horizontal average of ther
ˆ hisŽ .square of the differences, d yCc , between the historical data d , Fig. 4a andhis 0

ˆ Õ 2Ž . Ž .initial conditions c , Fig. 5 . The evolution of s z,t is estimated as follows. At0 r

melding time, s Õ 2
at a given depth is set to the horizontal average of the variance atr

data-points of the ensemble forecasts with respect to the data to be assimilated. Simply
Õ Õ 2 Ž .assuming proportionality with this variability, e s z,t is then an approximater

forecast of the environmental noise. The values of e Õ were set to 0.25 for ÕsT and to
0.3 for ÕsS. This quantitative scheme for forecasting the environmental noise led to

Ž .robust assimilations. From our sensitivity studies, models like Eq. 1 play an important
Ž .role. For example, if the estimated environmental data error variance is too small or of

erroneous distribution, scales that are not of interest can spoil the state estimate. Further
theoretical and observational research is required for more advanced formulations.

Ž .2.4.1.2. AdaptiÕe ES learning parameters. The present scheme is adaptive Section A.3 :
Ž .the possibly significant a posteriori data residuals are employed to correct learn the ES.

These residuals are first objectively analyzed and then used to update the a posteriori
ES. The main parameters in the ES learning pertain to the mapping of the residuals. This

Ž .mapping is carried out here by a multivariate ESSE analysis Lermusiaux et al., 1998 ,
assuming that the background error covariance function is separable in the horizontal

Ž .and vertical. From Kronecker product properties Graham, 1981 , the dominant eigende-
composition of the background error covariance matrix is then obtained from the these
of the horizontal and vertical error covariance matrices. In the horizontal, the covariance

Ž .function is assumed isotropic mesoscale Section 2.3 , of decorrelation scales set to 25
km, and zero-crossings to 50 km. In the vertical, the eigendecomposition is estimated
from the vertical EOFs of the residuals.
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2.4.1.3. ESSE forecast parameters. The forecast of the state and ES characteristics is
Ž .here based on a Monte Carlo ensemble approach Section A.4 . Several choices of state

and ES estimates are possible. In this study, the state forecast is the central nonlinear
forecast. The ES forecast is obtained as follows. An ensemble of perturbed states is
created such that, at the infinite ensemble limit, the sample covariance matrix from the a

ˆ Ž .posteriori the c q tends to the a posteriori error subspace covariance matrix. Thekq1

signs of the perturbations are constrained by data to avoid states of adequate variance,
but of possibly too unrealistic physics. Model errors are assumed null and the PE

Ž .stochastic forcing Lermusiaux, 1997 set to zero. While batches of forecasts are
computed in parallel, a similarity coefficient measures the added value of new integra-
tions to assess the convergence of the ES forecast. When the coefficient is large enough,
parallel iterations are stopped. The size of the ES hence evolves with time, in accord
with data and dynamics.

2.4.2. Optimal interpolation scheme
The OI consists of a two-scale OA of the new data, followed by a blending of the

forecast and OA fields. It is a robust scheme, with successes in several regions of the
Ž . Žworld’s ocean Lozano et al., 1996; Robinson et al., 1996 . Presently, the profiles Fig.

. Ž .4b–c are first gridded in a two-scale subbasin-scale, mesoscale minimum error
variance estimation. These analyses are carried out using the parameters of Table 2.
Gridded velocities are obtained assuming geostrophic balance with the analyzed density
field, for a level of no motion at 180 m. The analyzed tracers and internal flow are then
blended with the forecasts. 1 The weights in the blending are such that where the error

Žvariance of the gridded data is one, the forecast weight is null, and inversely Robinson,
.1996 . With this OI, the external flow adapts to the new data after the blending, by

dynamical adjustments.

3. Data-driven fields and covariances

The present nonlinear estimation starts on Sept. 15 and ends on Sept. 24, using the
parameters of Section 2. The initialization of the ES which leads to an interesting
decomposition of the summer variability is described in Section 3.1. The subsequent ten
days of field and dominant error covariance estimates are studied and evaluated in
Section 3.2.

3.1. Error subspace initial conditions

For the limited number of comprehensive modeling efforts in the Strait of Sicily,
ˆsimple principles are used to initialize the ES on Sept. 15. As for the initial fields c0

Ž . Ž .Section 2.3 , the main information consists of the initial data Section 2.1 and PE
ˆŽ .model Section 2.2 . The largest uncertainties of c are hypothesized to be generic0

Žmesoscale PE variability features of about 15–100 km horizontal-scale or

1 In future studies, the OA transport could perhaps be assimilated if its values in data regions were PE
adjusted, in a fashion similar to that discussed in Section 2.3.
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.wavelengthr2p . The corresponding variability subspace is thus estimated for the
Ž .domain of main interest sampled region on Fig. 4 . The details of the algorithm are in

Section A.1. Briefly, the eigendecomposition of the variability covariance matrix of the
Ž . Ž .observed variables here TrS is first specified based on the initial data Section 3.1.1 .

The dominant covariance matrix of the complete PE variability is then estimated by
ˆŽ .cross-covariances Section 3.1.2 : the initial fields c are perturbed based on the0

dominant TrS variability and the corresponding flow variability is build using an
Ž .ensemble of nonlinear adjustment PE integrations Section 2.3 . The resulting PE

ˆvariability from c is decomposed by SVD and scaled for adequate initial error0

variances.

3.1.1. Dominant eigendecomposition of the three-dimensional tracer error coÕariance
matrix

The initial tracer variability covariance function is assumed separable in the horizon-
tal and vertical. The covariance matrix is then amenable to exact eigendecomposition

Ž .using Kronecker product properties Graham, 1981 . In the horizontal, the correlation
Ž .function used Section 2.3 has isotropic decorrelation scales set to 25 km and

zero-crossings to 50 km. The eigendecomposition is simply carried out. In the vertical,
the decomposition of the covariance matrix is estimated from the EOFs of the differ-

Ž .ences between the profiles available on Sept. 15 Fig. 4a and the initial tracer fields.
Fig. 6 illustrates the results of the vertical multivariate EOF decomposition. The

normalized cumulative variance and four dominant EOFs are shown. These four EOFs
Ž .explain 81% of the variance of the data residuals from the initial tracers Fig. 5 . The

Ž .first EOF 32% of the variance is surface-intensified. It mainly represents the tempera-
ture variability within the surface thermocline. The non-dimensional S in that first EOF
is 4 times smaller in amplitude, but extends deeper, than T and has a secondary
maximum around 200–400 m, locations of the MLIW. The second EOF accounts for
30% of the variance. It is mainly a salinity EOF. The signature in S is also deeper than
that in T of EOF 1. Since the MAW is almost always found above 200 m depth, this
signature in S is mainly related to Tunisian shelf and Ionian waters found in the eastern

Ž .and southern part of the domain Fig. 5 . Hence, EOFs 1 and 2 likely correspond to two
Ž .different water masses. The EOF 3 12% of the variance represents thermocline and

halocline variabilities. Both T and S are mid-depth intensified, with one significant
zero-crossing. The amplitudes in the surface layers are vertically uniform and about
three times smaller than the mid-depths maxima. The T peak is within 20 to 100 m
Ž . Ž .thermocline depths while the S peak is within 70 to 400 m mainly halocline depths .
Comparing the non-dimensional amplitudes of T and S, that of S is twice as large.
During the months considered, the salinity variability associated with the MLIW and
with the Tunisian shelf and Ionian waters is important for determining the local
haloclinerthermocline depths. Finally, the fourth EOF explains 7% of the variance. It
has a structure opposite to that of EOF 3. However, the TrS amplitude ratio of EOF 4 is
larger than the SrT ratio of EOF 3. The EOF 4 could thus be mainly temperature-driven
processes, with no physical relation to EOF 3.

Ž . ŽCombining the vertical and horizontal not shown decompositions Section A.1, Eqs.
Ž . Ž . Ž . Ž . Ž . Ž . Ž ..A5 , A6 , A7 , A8 , A9 , A10 and A11 , the dominant eigendecomposition of the
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Fig. 6. Eigendecomposition of the non-dimensional covariance of the initial profile residuals, i.e., of the
Ž . Ž .differences between the profiles available on Sept. 15 Fig. 4a and the initial T , S fields Fig. 5 . The top

panel shows the normalized cumulative variance as a function of the eigenvalue number. The covariance C z
trc

w xis 40=40 . The first T , S vertical EOF explains 32% of the variance, the second 30%, the third 12% and the
fourth 7%. These top four EOFs are plotted below, as a function of the level numbers. They are described in
the text. They account for 81% of the variance, the top 18 EOFs for 99%.

tracer variability covariance E P ET is obtained. Several of the dominant 3Dtrc trc trc

eigenvectors or modes, columns of E , are illustrated by Fig. 7. At a given depth, thetrc

non-dimensional amplitudes and signs of the T , S anomalies depend on the specific
horizontalrvertical combination. The modes 1 to 10 are Kronecker products of the first

Ž .vertical EOF Fig. 6 with the dominant horizontal eigenvectors 1 to 10, respectively.
ŽThe associated T and S anomalies are therefore in phase partial compensating effects in

.density . However, modes 11 and 12 illustrated on Fig. 7 correspond to Kronecker
Žproducts of the second vertical EOF with the two dominant horizontal vectors not

.shown : the T and S surface anomalies are then in opposition. As plotted on Fig. 7, it is
extremely encouraging that the three dominant modes of 3D tracer variability corre-
spond to the dominant features subjectively, but independently, identified by Robinson

Ž . Ž .et al. 1998b : mode 1 correspond to the Adventure Bank Vortex ABV , mode 2 to the
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ŽFig. 7. Dominant eigenvectors of the normalized 3D mesoscale tracer variability covariance limited to the
.sampled domain . Only the surface values are shown; they are discussed in the text. The isotropic horizontal

w xzero-crossing is 50 km and decay scale 25 km. The size of the covariance is 147,680=147,680 . The Panel
number indicates the mode number.

Ž . Ž .Ionian Shelf Break Vortex IBV and mode 3 to the Maltese Channel Crest MCC ,
coupling the other two vortices. These features are in accord with the squeezing and

Ž .stretching of the AIS over the local topography Fig. 2 , as was also addressed by Onken
Ž .and Sellschopp 1998 . The mode 4 identifies another feature at the entrance of the Strait

Ž .of Messina. We name this vortex the Strait of Messian Vortex SMV . As for the three
Ž .other features Robinson et al., 1998b , satellite SST images and associated wind data
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Ž .not shown indicate that the SMV often corresponds to cold upwelled MAW. However,
it does not maintain its structure during RR96 as strongly as the other three vortices.

Ž .Meandering southward shelf currents on its western side Bohm et al., 1987 and the¨
lack of topographic controls on its eastern side are probable explanation.

These four identifications illustrate the potentials of ESSE for quantitative three-di-
mensional and multivariate variability studies. In the present situation, the specifics of
the geometry and horizontal covariances were such that the orthogonality constraint did
not significantly alter the dominant physical patterns. In other cases, one may need

Ž .subsequent analyses e.g., factor or cluster analysis to disentangle the physics from of
the dominant decomposition. In addition, the three-dimensional multivariate variability
of a feature often corresponds to groups of eigenvectors. For example, the three-dimen-
sional modes 11 and 12 of Fig. 7 correspond to the ABV and IBV as modes 1 and 2 did,

Ž .but they mainly account for salinity dominated variabilities Fig. 6 . From our experi-
ence, the number of modes required is often of the order of the product of numbers
required for horizontal and vertical univariate EOFs. For example, the present 400
dominant modes explain 68.2% of the total 3D tracer variance; the 1000 dominant
explain 87% of the variance. In passing, these numbers account for all possible
realizations of the 3D mesoscale tracer variability. Because of the memory in time, only

Ža portion of these eigenvectors is active at a given instant e.g., mesoscale eddies are not
.everywhere at the same time .

3.1.2. Dominant eigendecomposition of the three-dimensional PE error coÕariance
matrix

Ž Ž . Ž ..As outlined in Section A.1 Eqs. A12 and A13 , the velocity responses corre-
Ž .sponding to the dominant 3D tracer eigenmodes Section 3.1.1 are computed first. Each

ˆtracer mode is dimensionalized and added to the initial tracer fields c . The resultingtrc

ensemble of unbalanced fields is adjusted by integrating the momentum equations for 2
model-days, keeping T and S fixed. Fig. 8 illustrates the velocity responses of these

Ž .adjustment PE integrations Section 2.3 . The dimensional difference fields shown
correspond to the tracer modes 1 to 4, and 10 to 13, that were plotted on Fig. 7. The

ˆ Ž . Žspecifics of the state c e.g., density features and topography e.g., Ionian slope and0
.basin between Pantelleria and Malta strongly influence the flow responses to tracer

perturbations. The barotropic transport responses usually have their largest amplitudes
Žand gradients along the deep eastern side of the Ionian shelfbreak e.g., compare Panels

. Ž .1 and 11 with the others . The internal velocity anomalies of Panels 1–4 explain
internal circulation variabilities corresponding to the largest-scales of the ABV, IBV,
MCC and SMV, respectively. The internal velocity responses to tracer modes of shorter

Ž .horizontal scales e.g., Panels 10 and 13 clearly show that they are mainly subject to
Ž .geostrophic constraints the meridional internal velocity is not shown for this reason .

Ž .The effects of the vertical tracer decomposition Fig. 6 are also observed. The
barotropic transport and internal velocity responses of Panels 11–12, which correspond

Ž .to the second vertical tracer EOF T and S in opposition, S dominating , differ from that
Žof Panels 1–2, which correspond to the first vertical tracer EOF T and S in phase, T

.dominating . This difference is especially striking for the transport responses, which
Ž .adjust via baroclinicity, relief, diffusion and nonlinear effects Section 2.3 .
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Fig. 8. Dimensional, PE adjusted velocity responses corresponding to the 3D mesoscale tracer variability
Ž . Ž . Ž . Ž .eigenvectors 1 to 4 , and 10 to 13 , illustrated in Fig. 7. The Panel numbers indicate these 3D tracer

eigenmode numbers. Two response fields are shown for each mode: the barotropic transport stream function
and the internal zonal velocity. They are discussed in the text.

As the adjustment PE integrations for velocity responses are carried out in parallel,
the SVD of the matrix which columns are the normalized differences between the PE

Žadjusted states and initial state is updated and a convergence criterion evaluated Section
Ž . Ž . Ž ..A.1, Eqs. A13 , A14 and A15 . The criterion measures the value added by new

differences. In the present case, a similarity coefficient is required to be larger than 97%.
Ž .This is satisfied after 289 integrations Lermusiaux, 1997 . The corresponding SVD

estimates the dominant decomposition of the initial PE variability covariance matrix.



( )P.F.J. LermusiauxrDynamics of Atmospheres and Oceans 29 1999 255–303 273

Ž . Ž .The 50 150 dominant left singular vectors are found to explain 55% 84% of the
variability variance explained by the 289 vectors. Figs. 9–11 illustrate a few of these
vectors. In passing, they did not vary significantly with the open-boundary conditions

Ž .chosen Section 2.2 .
Fig. 9 shows the two dominant vectors of PE variability for Sept. 15. Panels 1a–2a

are horizontal maps of c , surface T , S and u. Panels 1b–2b are vertical cross-sectionsˆ
of T , S, u and Õ along the axis 17E of large amplitudes. The first two vectors are almostˆ ˆ
in quadrature of phase in the horizontal and are associated with baroclinicrbarotropic

Ž .Fig. 9. Multivariate eigenvectors of the normalized, PE adjusted, initial Sept. 15 error covariance estimate.
The vectors illustrated are the two dominant modes of the estimated PE variability for Sep. 15. The covariance

w xis 299,052=299,052 . The Panel numbers indicate vector numbers, with index a for the first level, and b for
a vertical cross-section along 17E.
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Ž .Fig. 10. As for Fig. 9, but for the surface values of eigenvectors 30, 31, 33, 34 . The variables shown are
indicated by the bottom titles. These four vectors are associated with the dominant internal variability of the
Adventure Bank Vortex and Maltese Channel Crest.

Ž .topographic Rossby wave patterns propagating along the steep Ionian slope Fig. 2 .
Ž .Their dominant wavelength is about 120 km. The maps 1a–2a show that in the surface,

both vectors-are dominated by their total velocity anomalies. 2 The non-dimensional
surface tracer anomalies are almost one order of magnitude less. The cross-sections
Ž .1b–2b show maxima for temperature within 20 to 70 m, depths of the MAW

2 Ž . Ž .In the normalization Appendix A , amplitudes are divided by the number of vectors 289 , hence leading
y2 y14 Ž 12 .to magnitudes of order 10 , for T , S, u and Õ fields, and 10 for c the 10 arises from Sv units .ˆ ˆ
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Ž .Fig. 11. As for Fig. 9, but for the surface values of eigenvectors 36, 40, 44, 45 . The variables shown are
indicated by the bottom titles. These four vectors account for eventual couplings between Ionian slope
processes and phenomena of the Pantelleria and Malta Islands basin.

variability along the slope, and for salinity within 200 to 500 m, depths of the MLIW
variability along the slope. The tracer perturbations are mainly limited to these depths.
For both vectors, T and S in the surface layer have opposite horizontal phases, with
similar normalized amplitudes, hence adding effects on the density anomaly. The
internal velocity signature is close to thermal-wind balance. It is mainly limited to the
surface 500 m, with a small amplitude first-baroclinic mode structure below. At depths,
the barotropic transport anomaly is the dominant field. This indicates that barotropic
current data should be most useful in this region. The PE vectors 3 to 30 contain patterns
similar to those of vectors 1–2, but different phases, scales and three-dimensional
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extent. This group of eigenvectors is associated with the Ionian shelfbreakrslope
processes and is weakly coupled to the rest of the domain.

Fig. 10 shows the group of vectors 31 to 34. They are the first vectors which have a
strong distinct signature associated with the ABV and MCC, around the basin between
Pantelleria and Malta. The horizontal maps for c , T , S and u are shown. Singularˆ

Ž . Ž . Ž .vectors 30 and 31 are close to quadrature of phase in the horizontal. The vector 33
Ž . Ž .is close to the 908 horizontal rotation of vectors 30 and 31 , with lobes related to the

Ž .bottom topography Fig. 2 . The wavelength is again of order 100–140 km. For all four
vectors, T and S are of opposite spatial phase in the surface, with c in phase with T. In
difference with Fig. 9, the amplitudes of the normalized barotropic transport anomalies

Ž .and corresponding external velocities definition in Section 2.2 are about half of those
of the normalized surface internal velocities and tracers, which are similar. From this
group of four vectors, the result is that the dominant variability of the ABV and MCC
during the period considered is mainly internal and baroclinic.

Fig. 11 is a selection of vectors which dominant signature represents patterns
coupling the Ionian slope region with the basin between Pantelleria and Malta. Surface

Ž .maps for T , S, u and c are again shown. The T maxima are at MAW depths 0–150 mˆ
Ž .while the S maxima are at lower MLIW depths 100–400 m in this region . For all four

Ž .vectors, the normalized fields of T , S, u and Õ not shown have similar amplitudes. Theˆ ˆ
dominant amplitudes of the c anomalies and corresponding external flow are at least

Ž . Ž .twice as small, excepted for the vector 44 . Hence, for the vectors 36, 40, 45 , as for
these of Fig. 10, the velocity signatures are mainly internal. Each vector of Fig. 11 is

Ž .now described successively. The T , S anomalies of vector 36 have opposite signs,
adding effects on the density anomaly and thus leading to important internal velocity

Ž .variability. The vector 36 accounts for internal mesoscale patterns along the Ionian
slope coupled with the dominant ABV and MCC baroclinic variability patterns. The

Ž .features of vector 40 are closer to the coast of Sicily, with a distinct three-lobe
Ž .structure around the MCC location and again, T , S in opposition. The vector 40 is a

mesoscale pattern coupling the ABV with the MCC and the western side of the IBV.
Ž .Over the Ionian slope, the vector 44 shows a surface subbasin-scale tracer structure

Ž .350 to 450 km wavelength , with a strong external anomaly. The non-dimensional
Žsurface internal velocity anomaly is there twice as small as the external one Section

.2.2 . The surface T , S anomalies are in phase but the T amplitude in the surface layer is
Ž .three times larger than of S S dominates at MLIW depths . Over the basin between

Pantelleria and Malta, the tracer fields have opposite signs and the internal velocity
anomaly, close to thermal-wind balance, dominates the external component. The vector
Ž .44 thus accounts for a coupling between mesoscale internal ABVrMCC processes and

Ž .subbasin-scale external wave patterns along the Ionian slope. The vector 45 has again a
Ž .subbasin-scale T , S structure over the Ionian slope 350 to 450 km wavelength . As for

Ž .vector 44 , in this region, the T , S surface patterns have the same sign, with the surface
amplitude of T three times larger than that of S. The external pattern amplitude is there

Ž .about twice that of the internal one. However, in contrast with vector 44 , the signature
over the Pantelleria and Malta basin dominates. Its tracer component is of large-scales,
with multiple centers and the T , S maps in opposition. The internal velocity anomaly

Ž . Ž .amplitude is there only almost twice that of the external Section 2.2 . The vector 45
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hence represents a coupling between mesoscale internal to large-scale external processes
over the ABVrMCC with subbasin-scale external patterns above the Ionian slope. Of
course, the coupled patterns shown on Fig. 11 are not imperatively physically feasible at
all times. The covariance loses the sign of perturbations and the SVD imposes
orthogonality constraints. Even though there is significant energy within the vectors
shown, in real ocean perturbations, the couplings could cancel out at a given time by
vector combinations. Other decompositions are then needed for further analysis.

Ž .To conclude, the present decomposition scheme Section A.1 is valuable for
estimating and studying the physical content of the initial variabilityrerror covariance
conditions. The results are in strong relation with the processes accounting for the main
dynamical variations occurring in the Strait of Sicily during August-September 1996.
Several phenomena are explained, in accord with the full PE model, horizontal mesoscale
correlations and vertical EOFs of the data residuals. To agree with the data misfits
around Sept. 15, the error standard deviations are estimated to be a quarter of these of

Ž Ž ..the variability gs0.25 in Section A.1, Eq. A15 . For the tracers, the initial errors are
Ž .horizontally uniform in the domain of interest: in the surface, the T S error standard

Ž .deviation is 0.458C 0.055 PSU . The corresponding initial velocity errors, obtained by
PE adjustments, are largest in the Ionian slope region where the maximum gradient of
the c error standard deviation is 1 Sv, across-slope, and the maximum surface, u, uˆ ˆ
error standard deviations are 12 cmy1.

3.2. Estimation with predictions of the fields and dominant error coÕariances

Ž . Ž .The initial field Fig. 5 and ES Figs. 9–11 conditions are now available. The
estimation and study for the subsequent ten days can be started. Section 3.2.1 describes
the results of the Sept. 15–18 forecast of the fields and ES, and of the assimilation on
Sep. 18. After this, the fields and dominant error covariances are forecast to Sept. 22.
The data for that day are assimilated, and new field and error forecasts issued for Sept.
24. Section 3.2.2 presents selected results from this period. All along, the estimated
fields are evaluated by intercomparisons with the OI fields, clear SST images and in situ
data.

3.2.1. September 15–18, 1996

3.2.1.1. Field forecast and analysis. Fig. 12 shows the surface T forecast for Sept. 18
Ž . Ž .Panel a , the satellite SST analysis at 12:10 GMT on Sept. 17 Panel b , and the

Ž . Ž .data-forecast melded estimates of the OI scheme Panel c and present scheme Panel d ,
both for Sept. 18. The forecast is in accord with the SST analysis for the overall shapes

Žof the AIS front and of the main features identified in Section 3.1 i.e., the ABV, MCC,
. Ž .IBV and SMV . However, at most depths, the root mean square RMS errors of the

Ž .forecast at data-points are above the computed RMS errors of the data Section 2.4.1 .
Ž .The assimilations Panels c–d improve this forecast. At each level, the RMS of the data

Ž .residuals of the OI and present analyses are within the computed data error: Panels c–d
are valid estimates. Nonetheless, the two assimilation schemes extrapolate the a priori
data residuals differently. As shown by the northwestward velocity vectors along the
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Ž .Fig. 12. Panel a shows the 3 day surface temperature forecast for Sep. 18, 0:00 GMT, overlaid with surface
Ž . Ž .velocity vectors scale arrow is 0.25 mrs . It is the forecast for both the OI and ESSE schemes. Panel b is

Ž .the satellite SST distribution for Sept. 17, 12:10 GMT. Clouded regions are black e.g., west side of the Strait .
The picture was downloaded from the real-time unclassified RR96 World Wide Web server of the SACLANT-

Ž .CEN. Panel c shows the surface temperature map estimate after OI assimilation of the temperature vs. depth
Ž . Ž . Ž . Ž .probes and estimated salinities collected on Sept. 18 Fig. 4b . Panel d is as c but after ESSE assimilation.

Ž .southern coast of Sicily Panel d , the present analysis immediately estimates a closed
Ž .ABV while the OI Panel c loses the vortex structure. Similar statements are true for the

SMV, south of the Stait of Messina. In the active ABV and IBV regions, the present
Ž . Ž .temperature front defining the AIS free jet Panel d is tighter than the OI one Panel c .

Ž . Ž .In addition, comparing Panels c–d with the SST Panel b , the present analysis appears
Ž .closer to that of the SST. The contour and shape of the estimated IBV Panel d agrees

with the corresponding SST feature. The OI somewhat misses the quasi-enclosed
structure of the vortex by warmer water. The present estimates of the southward MAW
filaments and eddy field south of the IBV are also better than their OI version. For
instance, the OI has smoothed the forecast of a cold eddy pinching off the eastern side of
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Ž . Ž .the IBV Panel a into a weak but wide filament Panel c , while the present analysis has
Ž .corrected its position Panel d and its temperature to ;23.5–248C, as given by the

satellite image. An issue here is that the OI imposes uniform scaling parameters,
independently of the local dynamics. One may argue that the dynamical evolution
subsequent to the OI assimilation could ‘‘repair’’ the OI fields. However, this adjust-
ment is carried out at dynamical time-scales, which may be too slow. The main
methodological result of the above intercomparisons is that the present analysis im-
proves the OI one and compares well with SST nowcast.

3.2.1.2. Nonlinear forecast of the dominant error coÕariances. Fig. 13 deals with the
convergence of the forecast of the dominant error covariance matrix for Sept. 18. Panel
Ž . Ž Ž ..a shows the history of the similarity coefficient r Section A.4, Eq. A28 which

Ž .Fig. 13. Panel a shows the values of the similarity coefficient r of the ES forecast for Sept. 18. With the
Ž . Ž .ensemble sizes 285 current and 241 previous , r was 99.05%, higher than the 99% limit chosen. Parallel

Ž .iterations were thus stopped. Panel b is the eigenvalue spectrum of the normalized ES covariance forecast for
Ž . Ž . Ž .Sept. 18. Panel c is the cumulative 0–1 spectrum associated with b . Utilizing 50 error eigenvectors

already accounts for 80% of the variance explained by the 285 vectors; using 100 vectors accounts for 90% of
that variance.
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assesses the added value of new parallel batches of perturbed forecasts for Sept. 18. The
chosen criterion limit of rG99% was attained after 285 forecasts. The spectrum and
cumulative spectrum of the resulting error covariance eigenvalues are described on

Ž . Ž .Panels b and c , respectively. An important result for the present approach is that the
Ž .dominant about first 50 eigenvalues decay faster than an exponential.

Fig. 14 illustrates the four dominant error vector forecasts for Sept. 18. They explain
Ž . Ž .25% of the error variance Fig. 13 of the field forecast Fig. 12a . Since model errors

are assumed null, these vectors only contain nonlinearly evolved predictability uncertain-
ties, of initial conditions illustrated by Figs. 9–11. The first vector is associated with

Fig. 14. Multivariate four dominant eigenvectors of the normalized, dominant error covariance forecast for
Sept. 18. The Panel numbers indicate the vector numbers. The non-dimensional surface fields shown are as
indicated below each plot.
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mesoscale to subbasin-scale anomalies, most of which account for tracer filaments along
the Ionian slope, with adjusted transport and internal velocity. These elongated T and S
anomalies are close to being in phase, compensating each other in density. They could
correspond to barotropically induced bifurcations of the surface AIS. Interestingly, the T

Ž .and S anomalies of Panel 1 also have their largest amplitudes along the strongest
Ž .portions of the temperature and salinity fronts of the Ionian slope, respectively Fig. 5 .

The AIS temperature front dominates along the eastern coast of Sicily, north of 368N to
388N, down to about 150 m depth. In the surface, the Ionian salinity front dominates

Žsouth of 36.758N to 34.58N, almost in parallel to 16.58E, down to about 100 m from
around 100 m to about 220 m, the zonal horizontal gradient of this salinity front reverses

.in accord with the MLIW rising on the shelf . Hence, the first vector corresponds to
possible bifurcations of the AIS and to fluctuations in the positions of the ‘‘Ionian slope
fronts’’. Note that it is the study of such forecast eigenvectors that clearly revealed the
different latitudinal locations of these temperature and salinity slope fronts. The second,

Ž .third and fourth vectors Panels 2–4 contain baroclinicrbarotropic topographic Rossby
wave patterns along the Ionian slope that are roughly similar to those of the initial ES

Ž .conditions Fig. 9 . The T and S surface anomalies are larger than initially and are
mainly restricted to their respective fronts. The external component is relatively strong:
the surface internal flow anomalies are about twice as large as the external ones
Ž . Ž .definition in Section 2.2 . These forecast vectors 2–4 are dynamically adjusted to the
PE field conditions of Sept. 18, with nonhomogeneous, anisotropic patterns and scales.
Higher eigenvectors show error patterns in the Ionian slope, ABV, MCC, IBV and SMV
regions. Some are intrinsic to a region, others show coupled patterns, with local
wavelengths ranging from 20 to 500 km. Scales are generally larger at mid-depths than
in the surface and bottom layers. For most eigenvectors, the scales are not as separated

Ž .as in the initial ES conditions Figs. 9–11 and the energy ordering does not strictly
follow scales. There are multiple scales in three-dimensions on most vectors, with
complex, nonhomogeneous patterns, different from regions to regions.

Fig. 15 shows the RMS predictability error forecast corresponding to the forecast of
Ž . Ž .Fig. 12a. Panel a shows the c and surface T , S and u errors; Panel b shows theˆ

level-10 T , S u and Õ errors. Initially, the tracer errors were horizontally uniform in theˆ ˆ
domain of interest and the velocity errors corresponded to PE adjusted responses
Ž . Ž .Section 3.1 . During Sept. 15–18, this has evolved. In the surface Panel a , the most

Ž .dynamically uncertain features are the Ionian slope fronts c , T , S, u and the meandersˆ
Ž .of the AIS along the ABV and MCC T , S and u . The T and S error fields confirm theˆ

different locations of the temperature and salinity slope fronts. The c error field
supports the Ionian slope as the region of largest variations of external variability. On

Ž .level-10 Panel b , the temperature is most uncertain within the IBV and associated
Ž .filaments ;20–30 m depths , while the salinity is most uncertain along the Ionian

Ž .slope ;70–150 m depths and along a MLIW path to the Western Mediterranean
Ž .;40–60 m depths . An implication of these results is that, for several locations and
features, the dominant variations of variability during Sept. 15–18 correspond to specific
state variables, indicating the need for particular data.

The nonlinear dynamical evolution of the error covariance function is portrayed by
Ž .Figs. 16 and 17. Fig. 16 recalls the initial shapes Section 3.1 . Precisely, the variability
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Ž . Ž .Fig. 15. Root-mean-square error forecast for the PE field forecast of Sep. 18 Fig. 12a . Panel a shows
Ž . Ž .surface errors, Panel b level 10 errors from 30 m over the Strait to 140 m off the Ionian slope .

Ž .covariance between the surface temperature at 36.538N, 13.408E and the other state
variables on Sept. 15 is shown. A row of the covariance matrix is thus considered.
Looking at the tracer covariances, even though only the dominant 289 PE singular
vectors are used, the initial horizontal ‘‘Mexican hat’’ and vertical EOF structures
Ž .Section 3.1.1 are well represented. The corresponding velocity cross-covariances are

Ž .shown by the c , u and Õ fields. Measuring T at 36.538N, 13.408E on Sept. 15 wouldˆ ˆ
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Ž .Fig. 16. Initial PE variability covariance estimate between the surface temperature at 36.538N, 13.408E and
Žthe other state variables. The first and tenth level components of a row of the covariance P on Sept. 15 size

. Ž . Ž .299,052=299,052 are shown. Panel a shows the surface values, Panel b the values for level 10.

influence S, c , u and Õ according to the structures of Fig. 16. Such structures would beˆ ˆ
p Ž .on the LHS of the gain K Section A.2 , extrapolating the data residuals onto the PE

state vector.
Fig. 17 is as Fig. 16, but for the Sept. 18 forecast. It exemplifies the covariances that

extrapolated the Sept. 18 data residuals in the analysis of Fig. 12d. The nonlinear
Ž .variations of variability have modified the initial structures Fig. 16 . The surface scales



( )P.F.J. LermusiauxrDynamics of Atmospheres and Oceans 29 1999 255–303284

Fig. 17. Same as Fig. 16, but for the dominant error covariance forecast for Sept. 18.

Ž . Ž .Panel a are now smaller than these at the bottom of the thermocline Panel b . The T
Ž . Ž .auto-covariance top right of Panels a–b is elongated along ;80 km , but much

Ž . Ž .shorter across ;15 km , the local energetic MCC meander Fig. 12 . The negative part
of the initial ‘‘Mexican hat’’ pattern is modified in accord with the AIS advection path
Ž . Ž .top right of Panel a . The top right of Panel b is the covariance between the surface T

Ž . Ž .at 36.538N, 13.408E and T at the bottom of the MAW layer level 10 . It has a positive
center, extending in three lobes and covering a wider region than the corresponding
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Ž .surface feature top right of Panel a . The T–S cross-covariance has equally dynamically
Ž .evolved towards more complex shapes bottom left of Panels a-b , and has now weak

Žconnections with Ionian slope processes. Comparing the T-u bottom right of Panelsˆ
. Ž . Ž .a–b and T–Õ top left of Panel b with their initial values Fig. 16 , in the surface, theyˆ

Ž .are tighter across and more elongated along the AIS meander Fig. 12 , and, on level 10,
Ž .they are wider and longer. Finally, the T-c cross-covariance top left of Panel a has

larger and rounder scales than initially, with a signature both within the Strait basin and
Ž .Ionian slope region. Other such fields Lermusiaux, 1997 show depth, region and

process dependent horizontal scales. Near coastlines, the tracer auto-covariances are
often close to coast-truncated ‘‘Mexican hats’’. Along the Ionian slope, the momentum
Ž .cross -covariances usually consist of decaying wave patterns. Similar statements can be
made for the vertical scales.

In conclusion, the error covariance has evolved according to the dominant nonlinear
variations of the variability, with scales and processes a function of the region and depth
considered. It is challenging to incorporate such complexities in the OI scheme. Setting
the assimilation aside, ESSE can track and organize the nonlinearly evolving predictabil-
ityrvariations of variability subspaces. Further studies of such subspaces and dominant
covariances, with perhaps subsequent analysis using mathematical tools tailored to the

Ž .phenomena of interest e.g., energy and vorticity analysis via ESSE , should be very
helpful in understanding complex multivariate geophysical systems.

3.2.1.3. Dominant error coÕariances after assimilation and error learning. The a
posteriori 3D multivariate RMS error fields corresponding to the analysis plotted on Fig.
12d have been exemplified by the real-time map of Fig. 1c. As one would expect from
uniform mesoscale error weights, the error is reduced around the location of the data.

Ž .However, the peculiarities of the dynamics affect this simple result Lermusiaux, 1997 .
Briefly, the error is for example reduced along the advection path of the meandering

Ž . ŽAIS, all across the Channel. East of the missing data region at 35.68N, 16.48E Fig.
.4b , the error reduction has tighter zonal scales than elsewhere, in accord with the local

Žpredictability error patterns portrayed on Fig. 14 AIS bifurcations or filaments along the
.slope, etc . In practice, such a posteriori error fields are useful to design future sampling
Ž . Ž .strategies Section 1 . Their 3D multivariate values not shown indicate that to best

reduce uncertainties on Sept. 18, one should investigate the MCC, SMV and deep Ionian
slope regions, with both hydrographic and velocity sensors.

Fig. 18 illustrates the adaptive component of the present estimation methodology: the
Ž .dominant error covariance matrix is learning e.g., Brockett, 1990 from the possibly

significant data residuals. The procedure is detailed in Section A.3. On Sept. 18, the a
posteriori residuals are first objectively analyzed. Their surface values are shown on
Panels a–b. The amplitudes of the gridded T residuals are below the T measurement
error, but those of the S residuals are at some locations larger than the S measurement

Ž .error. This could be due to the approximate salinity data estimate Section 2.3 or to the
neglected model errors. The significant residuals are then combined with the a posteriori

Žerror subspace, leading to an ‘‘adapted’’ error subspace estimate Section A.3, Eqs.
Ž . Ž ..A22 and A23 . Presently, their effect distinctly shows up within the adapted error

Ž .eigenvectors 80 to 90; the surface salinity of the adapted vector 81 is given on Panel c
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Ž .for example compare with Panel b . The eigenvalue and cumulative spectra of the
Ž .corresponding after the assimilation and error learning on Sept. 18 normalized error
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Ž . Ž .covariance matrix are plotted on Panels d and e , respectively. In comparison to the a
Ž .priori or forecast quantities Fig. 13b–c , the assimilation has logically flatten the error

spectrum.
Fig. 19 shows the surface values of the four dominant a posteriori and adapted error

eigenvectors. The first three vectors mainly explain temperature driven wave-patterns
Žand AIS meanders along the eastern coast of Sicily data were not assimilated in this

.region . The fourth vector is a salinity related pattern on the southern part of the Ionian
slope, with a temperature signature at the northeastern open boundary. These dominant

Ž .vectors differ from the forecast ones Fig. 14 . The assimilation has decreased the error
amplitude and reorganized the error structure, in agreement with the data innovations.

3.2.2. September 18–24, 1996
Selected results of the estimation and study subsequent to the assimilation on Sept. 18

are presented. Some aspects of the adaptive evolution of the error covariances are
summarized. The features and variabilities of the physical fields are discussed and their
estimation is evaluated by intercomparisons with the OI fields, SST images and in situ
data.

Ž .The assimilations on Sept. 18 and Sept. 22 Fig. 4b–c introduce the non-uniform
Žproperties of the data specific variables, resolution in space and time, localized

.sampling into the error statistics. The adaptive evolution of the error covariance is now
influenced by the statistics of both the observations and dynamics. For example, the

Ž .similarity coefficient r Section A.4 between the ES forecasts for Sept. 18 and Sept. 22
is,

1 1
285

2 2Ts P y E y E y P yŽ . Ž . Ž . Ž .Ý i 18 18 22 22ž /
is1

r s s58%. 2Ž .18y22 292

s PŽ .Ý i 22
is1

Ž .Even though the two ES forecasts have similar sizes 285 and 292 , their amplitude
and structure are only 58% alike. Similar comments apply to the Sept. 22 and Sept. 24
ES forecasts. For each of the Sept. 18–22 and Sept. 22–24 periods, the terminal

Ž .prediction of the dominant error variance not shown also indicates that the error
growth is tempered downstream of the sampling locations. The scales and patterns of the
corresponding error eigenvector forecasts confirm that these data influences are in
accord with the features identified in Sections 3.1 and 3.2.1. For the Sept. 18–22 error
forecast, the features involved are the ABV, MCC, IBV and Ionian slope fronts. For the

Ž .Fig. 18. Adaptive learning of dominant errors. Panels a–b show the surface T , S gridded a posteriori data
Ž .residuals as estimated by ESSE objective analysis on Sept. 18. Panel c is the surface S of error vector

Ž . Ž .number 81 after adaptation. This vector explains parts of the residual shown by b . Panel d is the eigenvalue
Ž . Ž .spectrum of the normalized ES covariance after adaptation. Panel e is the cumulative 0–1 spectrum

Ž .associated with d . Using 50 vectors explains 73% of the variance explained by the 286 vectors; 100 vectors
explain 87% of that variance. Comparing with Fig. 13, the assimilation flattens the error spectrum.
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Fig. 19. Multivariate four dominant eigenvectors of the normalized, dominant error covariance after ESSE
assimilation and error subspace learning on Sept. 18. The Panel numbers indicate the vector numbers. The
non-dimensional fields are from left to right, top to bottom: the barotropic transport and the surface
temperature, salinity and zonal internal velocity.

Sept. 22–24 error forecast, the features involved are the IBV and a portion of the Ionian
slope fronts. In general, the real-time use of such predicted results should be valuable for

Ž .optimizing the choice of sensors and sampling patterns. As exemplified by Eq. 2 , the
relatively low similarity between ES forecasts also indicates that a sub-optimal approach

Ž .where parts of the ES are kept stationary for some time requires careful sensitivity
studies, even for an interval within the predictability limit of the scales considered. Such

Ž .ideas are further discussed in Lermusiaux, 1997 .
Fig. 20 shows surface temperature estimates for Sept. 23, which is after the two

Ž . Ž .assimilations. The present forecast is plotted on Panel a and the OI one on Panel b .
Ž .Panel c is the satellite SST analysis at 12:45 GMT on Sept. 23. As argued later, the
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Ž . ŽFig. 20. Panel a shows the 8-day ESSE surface T forecast for Sept. 23 a 1-day forecast from the ESSE fields
. Ž . Ž . Ž .of Sept. 22 , overlaid with surface velocity vectors scale arrow is 0.25 mrs . Panel b is as a but for the OI

Ž .a 1-day forecast from the OI fields of Sept. 22 . For each, an assimilation occurred on Sept. 18 and 22. Panel
Ž .c is the satellite SST distribution for Sept. 23, 12:45 GMT. The scale differs from that of Fig. 12b. Clouded
regions are black. The picture was downloaded from the real-time unclassified RR96 World Wide Web server
of the SACLANTCEN.

present estimation gives the overall best fields. The evolution of the features whose
Ž .variations dominate the variability during RR96 as identified in Sections 3.1 and 3.2.1

is thus best illustrated by comparing Fig. 20a with Fig. 12d. Considering these features
from west to east, the ABV has deepened to the southeast, with parts of the AIS flow

Ž .pinching off a warm mesoscale eddy around 36.78N, 12.88E . The MCC has strength-
ened and moved northeastward. It has advected warm Tunisian shelf waters along its
path and induced a recirculation of MAW origins to the southwest, which is now leading

Ž .to a cold mesoscale eddy around 368N, 13.68E . The IBV has reduced its strength and
horizontal extent, somewhat moving to the eastern coast of Sicily, north of Syracuse.
The T and S fronts of the Ionian slope have been associated with a substantial
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mesoscale to subbasin-scale variability. Their evolutions and several of the MAW
mesoscale eddies formed east of 13E and south of the AIS are discussed next, as part of
the field evaluation.

Ž .The present estimates Fig. 20a are first evaluated by intercomparisons with the OI
Ž .ones Fig. 20b . After the assimilations, the two melded fields differ significantly even

though they each have RMS data misfits within the estimated measurement error

Ž . Ž . Ž .Fig. 21. Panel a shows the surface averaged top 5 levels root mean square RMS a priori and a posteriori
Ž .residuals with respect to the temperature probes collected on Sept. 18, 22 and 24 Fig. 4b–d . Data are only

assimilated on Sept. 18 and 22. On Sept. 15, the RMS was taken with respect to the probes of Sept. 18 for skill
evaluation. The curve in red is the RMS for the OI, the blue curve is for the ESSE. Using this RMS measure,
the present temperature forecast is 14% better than the OI one for Sept. 22 and 21% better for Sept. 24. The

Ž .green curve is the surface averaged top 5 levels of the measurement model RMS error used in ESSE. Panel
Ž . Ž .b is as a but for salinity. The present salinity forecast is 25% better than the OI one for Sept. 22 and 16%
better for Sept. 24.
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bounds. This is due to the different error weights, which during RR96 often yield to OI
Ž .fields smoother than the ESSE ones. Outside of the assimilated data regions Fig. 4b–c ,

the data corrections are advected downstream of the dominant features, e.g., along the
AIS meanders and Ionian slope fronts. The Ionian slope region is in fact where the two
fields differ the most. Since there is no in situ verification data at these locations, the

Ž .SST image on Sept. 23 Fig. 20c is used for qualitative evaluations. Describing the
Ž .estimates southward along the Ionian slope, the present estimate Fig. 20a is closer to

the SST image than the OI one for each of the following features: the southward AIS
meander off the coast of Calabria; the U-shaped pattern of warm Ionian water towards

Ž .the eastern Sicilian coast; the 16E intrusion of Ionian water off Syracuse 368N to 378N ;
the adjacent MAW extrusion along the slope from 378N to 35.38N, suggesting an AIS

Žbifurcation; the 25.5–26C, 70 km radius anticyclonic eddy centered around 35.78N,
. Ž . Ž16.18E ; the two cold, 20 km radius mesoscale eddies at 35.28N, 15.28E and 35.38N,
.16.58E ; and finally the IBV and its southwestward tongue entrained in the MCC.

The quantitative evaluation of the present field estimates is carried out using the in
Ž .situ data. On average, within the new data regions Fig. 4c–d , the level by level RMS

of the forecast-data misfits at data-points give an ESSE forecast 10 to 20% better than
the OI one, depending on the depth considered. Fig. 21 summarizes these results,

Ž .plotting the Sept. 15–24 evolution of the surface-averaged top 5 levels data misfits at
data-points. The OI is in red, the adaptive ESSE in blue. Both curves are the same up to

Ž .Sept. 18. The measurement RMS error given by ESSE Section 2.4.1 is shown in green,
again on average for the top 5 levels: it increases for T , but decrease for S, in accord

Ž .with the average variability tendencies Panels a–b . All melded estimates have a RMS
error below that measurement RMS error. Nonetheless, the present surface forecasts are
on average about 20% better than the OI ones, even though the melded OI fields have
smaller data misfits. For example, the Sept. 24 ESSE data-forecast misfit at data-points
is for T , 21% better, and for S, 16% better, than the OI one. This is encouraging since

Ž .the sampling of Sept. 24 Fig. 4d revisits the IBV domain already measured on Sept. 22
Ž .Fig. 4c . The large temperature RMS error increase for both schemes on Sept. 24 is due

Žto their slightly off-positioned forecasts of the IBV front. Considering salinities Panel
.b , even though the OIrESSE salinity RMS misfits decrease steadily, the salinity

forecast errors grow rapidly. This may indicate that the estimation of the AXBT
Ž .salinities Section 2.3 could be improved. Finally, looking at the SST on Fig. 20c, the

Ž .evaluation based on localized data Fig. 4b–d may underestimate the performance. The
overall improvements could be higher than 20%.

4. Summary and conclusions

In the foregoing paper, the ESSE approach was applied in real-time for a period of
ten days during the NATO operation RR96, considering mesoscale variability in the
Strait of Sicily. Combining the intensive RR96 data survey with the primitive equation

Ž .model of HOPS e.g., Robinson, 1996 , the estimation and study of the physical fields
and their dominant variability and error covariances were carried out. The four-dimen-
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sional adaptive estimation methodology was illustrated and evaluated. The correspond-
ing technological achievements and scientific progress were presented and studied.

Technology-wise, this experiment and similar studies in several regions of the
Ž .world’s ocean Robinson et al., 1998c demonstrate that the ESSE system is a portable

and comprehensive nonlinear assimilation scheme for realistic mesoscale to large-scale
ocean studies, capable of providing real-time estimates of ocean fields and associated
error and variability covariances. Presently, its main components involve the PE model
of HOPS, the initialization and parallel ensemble forecast of the error subspace, the
sequential assimilation, the dynamic measurement model, the adaptive learning of the
dominant errors and the verification modules. The system confirmed that the dominant
error eigenvalues have a decay faster than exponential and the ES convergence criterion
employed showed that an ES dimension of order 300 sufficed for the considered RR96
experiment. The present nonlinear scheme is thus here about 299,052r300;103 times

Ž .cheaper than classic, full-covariance and linear methods e.g., Robinson et al., 1998a .
For identical computer power, such methods would need more than 8 years for the ten
days of estimation. Yet, sensitivity studies on the size of the ES and improvements of
the parallel forecast networking suggest that the present elapsed-time could be further
reduced by half. Considering sub-optimal schemes for rapid operations, one could also
keep the ES constant for some time, hence using a piece-wise stationary ES. Other
simplifications only perturb regions in which future data are known to be gathered or
use simple models for the error eigenvalue growth, keeping the eigenvectors fixed. Such
considerations are first steps towards rapid, nested and multiscale assimilation systems
in multiple regions.

The estimated fields were evaluated by intercomparisons with OI fields, clear SST
images and available in situ data. Qualitative comparisons with the OI fields clearly

Ž .showed the advantage of the present error weights covariances which are multivariate,
multiscale, anisotropic and commonly non-uniform in space and time, in accord with the
evolving data and dynamics. Quantitatively, the forecast-data misfits at the in situ
observation points around the Ionian Shelf Break Vortex region implied that the present
forecasts were, on average, 20% better than the OI ones. Qualitative comparisons with
SST images over the complete model domain suggested much higher improvement
factors. Note that the OI is nonetheless a robust scheme and a useful assimilation quality
benchmark. It is cheaper than the present scheme by a factor approximately equal to the
size of the ES divided by the number of CPUs used in parallel. In this study, 12 to 16
Sun Sparc 20 CPUs were employed, depending on availability. Improving the OI
scheme from analyses of the present error weights is thus useful, especially for
large-domain, rapid assimilations. In general, ESSE simulations can be used for compar-
ison and refinement of cheaper assimilation techniques.

Several scientific results were also obtained. The dominant decomposition of the
initial PE variability covariance matrix has determined several of the features associated
with the dominant variability in the Strait of Sicily during August–September 1996. Five

Ž .coupled features emerged: the Adventure Bank Vortex ABV , the Maltese Channel
Ž . Ž .Crest MCC , the Ionian Shelf Break Vortex IBV , the intermittent Strait of Messina
Ž .Vortex SMV and the subbasin-scale temperature and salinity fronts of the Ionian slope

and their corresponding wave patterns. The first three of these features were also
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subjectively identified during independent RR96 forecast evaluations and named by
Ž .Robinson et al. 1998b . The sustained presence of the ABV, MCC and IBV during

RR96 is likely due to the squeezing and stretching of the AIS over the Adventure Bank
and Maltese plateau, to the prevailing mean westerly winds maintaining an upwelling
balance on the southern coast of Sicily and to the inertia of the isopycnal domes. The
intermittent SMV lacks these topographic and mean wind controls, and could be

Ž .unsettled by meandering southward shelf currents Bohm et al., 1987 . From this¨
identification, it is of interest to study the dynamical relationships and interactions
between these five features and the double MAW and MLIW flow system of the Sicily
Channel. A complete understanding of these relations and their variabilities at multiple
time and space scales should be valuable for Mediterranean science.

A small step in this direction was provided by the present study of ten days of
estimated physical fields and dominant error covariance decompositions, revealing
several of the 3D-multivariate PE processes associated with the variations of the above
five features. In the Ionian slope region, filaments and bifurcations of the AIS into
several streams as well as meanders of the temperature and salinity slope fronts were
suggested by the field evolution and confirmed by the dominant predictability eigenvec-
tors. This dominant variability involved mesoscale to subbasin-scale baroclinic and
barotropic topographic wave patterns. The tracer and internal flow anomalies were close
to thermal-wind balance and mainly limited to 0–500 m. The corresponding barotropic
transport anomalies were shown to have their largest amplitudes in this region and to be
influenced by baroclinicity, relief, diffusion and nonlinear effects. In the ABV and MCC
region, the dominant variability was of a mesoscale, internal and baroclinic nature, not
far from geostrophic equilibrium. The internal flow anomalies usually dominated the
external ones and were supported by temperature and salinity anomalies often adding
effects in density. If couplings between the Ionian slope, IBV and ABVrMCC regions
occurred, they appeared to involve subbasin-scale external processes and mesoscale,
baroclinic internal processes, possibly occurring simultaneously in both regions. South
of the AIS, a substantial mesoscale activity with several MAW eddies was estimated and
forecast with accuracy by the present scheme. Considering water masses, the salinity
variability and error patterns associated with the deep MLIW and with the Tunisian shelf
and Ionian waters were found to be linked with the variations of the properties
Ž .pycnocline depth, vertical and horizontal scales, overall strength of the surface-in-
tensified features presently revealed. In general, the scales of the dominant predictability
error covariances in the Strait were usually observed larger at mid-depths than in the
surface and bottom layers. These scales and associated error patterns were often not
separated, implying the possibility of coupled multiscale interactions. In fact, the
dominant eigendecomposition of covariance matrices did not follow a simple scale
ordering. Looking at covariance function fields, the dynamical evolution over realistic
topography induced nonhomogeneous and locally anisotropic 3D maps, with complex
multivariate correlations, in accord with the evolving properties of the physical fields.

In general, the above facts show how the present approach can continuously
decompose, organize and track the dominant nonlinear ocean variability. It was found
here, and confirmed in other ocean regions, that the three-dimensional variations of
variability of a feature are often associated with groups of predictability eigenvectors
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and eigenvalues. This is in part due to the orthogonality constraint, but is also a
reflection of the coupled multiscale, multivariate and nonhomogeneous nature of the real
ocean variability. Once the evolving dominant eigendecomposition has been estimated
and studied as in this presentation, subsequent analyses should thus be very informative.
For example, additional tools could disentangle the processes from the estimated

Ž .subspaces e.g., Fourier, wavelets, factor or cluster analysis . Another direction consists
in studying the time-space evolution of diagnostic quantities, e.g., energy, vorticity or
enstrophy principal components. The four-dimensional estimation and dominant decom-
position of statistical properties other than the fields and covariances should also be a
fruitful sign of research.

These few technological and scientific advances are linked to practical data and
model feedbacks. First, the dominant error covariance eigendecomposition and error
variance fields are useful to estimate data requirements for a specific experiment. From
the present study, the importance of the deep MLIW variability and error patterns
suggests that, for accurate three-dimensional estimations, both salinity and temperature
should be measured in the Sicily Strait, at least down to about 500 m. The need of
current data in the Ionian slope region was emphasized, especially for the external

Ž .component e.g., moorings, ADCPs, AUVs . For some regions, periods and features, the
dominant uncertainties were also observed to be associated with specific state variables,

Ž .for example: T for the IBV, S for a MLIW path or T S with total velocities for the
Ž .temperature salinity Ionian slope front. In general, the error growth was logically

tempered downstream of the sampling locations. It was also found that the impacts of
observations were determined by the most uncertain variations of the five features
identified. For example, the data impacts had tight horizontal scales across the Ionian
slope, in accord with the most uncertain local fluctuations of the corresponding
subbasin-scale fronts. Hence, evolving these dominant variations or predictability errors
appears most valuable for adaptive sampling design. The present approach in fact allows
to forecast data optimals, i.e., the most desired and least expensive future observational

Ž .strategy sensor and platform types, sampling pattern within the available observational
networks. Such a scheme, combined with practical and meteorological constraints, was
used subjectively during the March 98 Rapid Response in the Gulf of Cadiz for the

Ž .adaptive design of AXBT flight patterns Robinson et al., 1998c . With the implementa-
tion of real-time optimal control and optimization algorithms, computed data optimals
give the ESSE scheme the observations it needs most, hence ideally improve the ocean
estimate. Secondly, the focus on the largest errors has been very helpful to refine the
dynamical and measurement models employed in the real-time experiment. The open
boundary conditions, coastal and bottom friction parameterizations, Shapiro filter and
error models have for example been improved. Such feedbacks are important and during

Ž .the more recent Rapid Response 97 in the Ionian Sea Robinson et al., 1998c , additional
model improvements were achieved.
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Appendix A. Error subspace statistical estimation scheme employed

The main notation used and the estimation scheme employed are summarized. The
intent is simply to provide an helpful and concise overview. For more on such

Ž . Ž .methodologies, we refer to Lermusiaux 1997, 1998 , Lermusiaux et al. 1998 , and
Ž .Lermusiaux and Robinson 1998 . Related ensemble techniques for nonlinear data
Ž .assimilation are addressed in Evensen, 1994; Burgers et al., 1998; Miller et al., 1998 .

The so-called reduced state-space Kalman filters are discussed in a geophysical context
Ž . Ž .for example by Cane et al. 1996 and Cohn and Todling 1996 . The aim here is to

reduce the error statistics in a fashion consistent with the assimilation criterion used. The
Ž .present framework is that of a continuous-discrete estimation Jazwinski, 1970 . The

gridded values of the PE fields, u, Õ, T , S and c are combined into the state vectorˆ ˆ
Ž .T n Ž .cs u, Õ, T, S, p eR . For the internal velocities u, Õ the convention of Cox 1984ˆ ˆ ˆ ˆ

Ž . Ž .is kept; in all other cases, P is the ‘‘estimate’’ operator Gelb, 1974 . Model errors areˆ
assumed null. The dynamical evolution of the ocean state c is described by,

dcs f c ,t d t , A1Ž . Ž .
Ž .where f P, t is the nonlinear PE operator, including boundary conditions and forcings.

m Ž .Data at time t are stored in d gR . The measurement model associated with Eq. A1k k

is

d sC c qv . A2Ž .k k k k

The v gR m are random processes, assumed of zero statistical mean and of covari-k
� T 4ance matrix R , with ´ v v s0 for k/ j. The state error covariance matrix at t isk k j k

ˆ ˆ T n=n�Ž .Ž . 4 � 4defined by P s´ c yc c yc gR . The notation ´ g refers to the˙k k k k k

statistical mean of a given state space functional g. At times t , to refer to quantitiesk
Ž . Ž .before and after the assimilation, the adjectives a priori y and a posteriori q are

Ž . Ž . Ž .used, as in Gelb 1974 . When the index k can be omitted, the y and q besides
singular vectors are simplified to subscripts.
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Table 3
Filtering via ESSE at t : continuous-discrete problem statementk

ˆŽ . Ž .Dynamical model dc s f c ,t d t, with c sC . A10 0

Ž .Measurement model d sC c q Õ . A2k k k k

p T c� Ž . < w x4 Ž .Error subspace P , E with P sE P E and rank E s p min tr P . A3k k k k k k k P kk,Ek

pˆ� < w Ž .x w x4 Ž .ES melding criterion c min J s tr P q using d , . . . ,d . A4ˆk c k k 0 kk

The estimation is treated in real-time as a minimum error variance filtering problem
Ž . Ž .Table 3 . Using the error subspace ES concepts, the optimum rank-p approximation of
P is then the matrix P p which minimizes the trace of the complementary covariance P c,

p Ž Ž ..difference between P and P Eq. A3 . This optimum is the dominant rank-p
eigendecomposition of P, EP ET. The ES is characterized by the dominant rank-p error

ˆ Ž Ž ..eigenvectors and eigenvalues, E and P . The filtering field estimate c Eq. A4 hencek

minimizes the trace of the a posteriori error subspace covariance, based on past data and
Ž Ž . Ž . Ž . Ž ..dynamics Eqs. A1 , A2 , A3 and A4 .

ˆThe main quantities to be evolved are thus the field estimate, c , and its principal
error components and coefficients, E and P . In this study, the scheme addressing Table

Ž .3 is recursive. It requires initial conditions for the fields, C Section 2.3 , and for the0
Ž .ES, E and P Section 3.1 . The main ESSE computations hence consist of four steps:0 0

Ž .the initialization of the ES Section A.1 , the assimilation or data-forecast melding
Ž . Ž .Section A.2 , the adaptive learning of the dominant errors Section A.3 , and the state

Ž .and ES forecasts to the next assimilation time Section A.4 . All quantities are
dimensional except in the SVDs so that the ordering of singular values is unit
independent. 3

A.1. Error subspace initial conditions

The construction of the initial ES, summarized by Table 4, uses the PE model and
Ž .data available on Sept. 15. The model errors assumed null A1 and the initial data

Ž .coverage being almost uniform in space Fig. 4a , the dominant initial error covariance
is assumed proportional to the dominant covariance of the PE variability with respect to
C . It is computed in two stages. The eigendecomposition of the covariance of the tracer0

Ž Ž . Ž . Ž . Ž . Ž . Ž .variability is computed first, from data Eqs. A5 , A6 , A7 , A8 , A9 , A10 and
Ž ..A11 . The dominant PE variability covariance is then estimated via adjustment PE

Ž .integrations Section 2.3 , constructing the flow variability in accord with the dominant

3 Quantities marked with asterisks are normalized. For each field, the norm is the volume and sample
averaged variance. The SVDs are carried out on normalized matrices MU such that MsNMU sNEU

S V T

U n=n Ž .and EsNE , where the norm matrix NgR is block diagonal. The notation SVD P denotes thep

operator that carries out this normalization, selects the dominant rank p SVD and renormalizes the output, to
yield E S V T.
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Table 4
Ž .Error subspace initialization index ks0 is omitted

Tracer horizontal covariance eigendecomposition
U U U UTr r r r Ž .Normalized variability covariance matrix: C sE P E . A5trc trc trc trc

Tracer vertical covariance eigendecomposition
i i i ˆŽ . Ž .Historical past synoptic tracer residuals: d sd yC c , is1, . . . ,s. A6r trc

Ui y1 iŽ . Ž .Remove horizontal average, normalize: d s N d yd . A7r r r r

U U U U U1 s TŽw x. Ž .SVD of the matrix of normalized tracer residuals: SVD d , . . . ,d sE Ý V . A8r r r r r

T Uz z z z z 2 Ž .Tracer variability covariance matrix: C sE P E , where P sÝ r s. A9trc trc trc trc trc r

Tracer 3D variability covariance eigendecomposition
Uz r Ž .Kronecker product: P sC mC . A10trc trc trc

p T Ž .Sort eigenvalues and truncate to subspace: P sE P E . A11trc trc trc trc

Primitive Equation Based Error Subspace
1

2j jˆ ˆ Ž .Ensemble of perturbed initial tracer fields: c sc qE P q e , js1, . . . ,q. A12'trc trc trc trc

U1 qˆ ˆw x Ž .Differences of PE adjusted fields, normalize: Ms c yC , . . . ,c yC ; Ms NM . A130 0 0 0

Ž U . U U UT Ž .SVD of normalized PE variability: SVD M sE Ý V A14

Up 2 T 2 Ž .Initial principal error covariance matrix estimate: P sg EP E , with P sÝ rq. A15

Ž Ž . Ž . Ž . Ž ..covariance of the tracer variability Eqs. A12 , A13 , A14 and A15 . A factor
scales the variability to an error variance.

In the first stage, the tracer variability covariance function is assumed separable in the
horizontal and vertical. In the horizontal, the variability covariance matrices of T and S,
when normalized by their total variances, are presumed equal: CrU sCrU sCrU sCrU ,T T TS SS trc

Ž .using a notation similar to that of Daley 1991 , with the superscript r denoting the
horizontal separation vector. In the present study, 4 the matrix CrU gR lh=l h is specifiedtrc

Ž .analytically, in accord with the horizontal scales seen in the data Fig. 4a . Its
Ž Ž ..eigende-composition Eq. A5 is feasible and simply carried out. In the vertical, the

decomposition of the dimensional tracer covariance matrix, C z eR2 l Õ=2 l Õ, is computedtrc
Ž .from EOFs of data residuals. The misfits between the initial profiles Fig. 4a and

ˆ Ž . Ž .objectively analyzed tracers c are evaluated at data-points Eq. A6 . In Eq. A6 , thetrc

d i contain the is1, . . . ,s profiles linearly interpolated onto the l model levels. The C i
v

iconsist of horizontal bilinear interpolators. The horizontal averages d of the residuals dr r

are then removed and the resulting zero-mean residuals normalized by their sample and

4 The number of horizontal, vertical and total grid points are l , l and ls l l , respectively.˙h v h v
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i y1 iŽ . Ž .volume average, d )sN d yd in Eq. A7 . The SVD of the matrix of normalizedr r r r
Ž Ž ..residuals Eq. A8 is evaluated, which yields the tracer variability vertical EOFs and

z U z U 2 z Žcoefficients, E sN E and P sÝ rs, or dominant decomposition of C Eq.trc r r trc r trc
Ž .. z 2 l v=2 l vA9 . Finally, including the scalar horizontal variances of T and S into C eR ,trc

2 l=2 l z rU Žthe 3D covariance matrix P gR is simply the Kronecker product C mC Eq.trc trc trc
Ž .. T 2 l=qA10 . The significant rank-p eigendecomposition of P , E P E where E eRtrc trc trc trc trc
Ž Ž .. z rUEq. A11 , is then easily obtained from the eigendecompositions of C and Ctrc trc
Ž .Graham, 1981 .

ˆ jIn the second stage, an ensemble of q tracer initial conditions, c , of covariancetrc
ˆ jŽ Ž .. Ž Ž ..matrix Eq. A11 is first created Eq. A12 . The fields c are obtained by adding totrc

1r2 j jˆ 'c an adequately weighted eigenvector j, E P q e , where the e ’s are jstrc trc trc

1, . . . ,q base vectors. The resulting states are then balanced by an ensemble of
ˆ jadjustment PE integrations: the perturbed tracer fields c are fixed and the momentumtrc

Ž .equations in Eq. A1 integrated forward until the mean kinetic energy stabilizes around
Ž .a plateau, without rapid changes parallel computing is then used . The differences

ˆ j Ž Ž ..between C and these PE adjusted fields c form the matrix M Eq. A13 . This0 0
Ž Ž .. Umatrix is normalized and the initial ES Eq. A15 is estimated from the SVD of M

Ž Ž ..Eq. A14 . During the parallel adjustment PE integrations, a similarity coefficient is
Ž .evaluated as in the ES forecast, Table 5 hereafter to assess the added value of new

2 Ž .integrations and thus decide at which j to stop. Finally, the factor g in Eq. A15
scales the variability variance to an error variance.

A.2. Assimilation or data-forecast melding

The melding is chosen linear and based on a minimum error variance in the sample
Ž .ES Table 6 . The present scheme being recursive, the sample ES forecast, described by

Ž .E_ and P y , is assumed available. It is obtained in Section A.4.
Ž Ž .. p Ž Ž ..The update of the state Eq. A16 uses the gain K Eq. A17 , optimal for the

Ž . Ž . Ž .dominant error covariance forecast given by E_ and P y . In Eq. A18 , P q is
estimated by eigendecomposition of the right-hand-side: the columns of H are ordered

Ž .orthonormal eigenvectors and P q is the ordered diagonal matrix of eigenvalues; Eq
Ž .then follows from Eq. A19 .

A.3. AdaptiÕe learning of the dominant errors

For several reasons, including the simple dynamical and measurement error models,
the error subspace reduction and the linear melding, significant components of the ocean
signal could be left over in the a posteriori residuals. Table 7 describes the discrete

Ž .algorithm used here to learn correct the ES in accord with these possibly significant
Ž .residuals. Continuous dynamical systems e.g., Brockett, 1990 for such adaptive ES

Ž .learning and ESSE assimilations can also be derived Lermusiaux, 1997 .
ˆ Ž .The a posteriori tracer residuals, dyCc q , are first analyzed into gridded fields

Ž . Ž Ž . Ž ..n q , via a one-stage ESSE analysis Eqs. A20 and A21 . The background for theseˆ
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Table 5
Nonlinear dynamical state and ES ensemble forecast

State central forecast

ˆ ˆ ˆ ˆ ˆŽ . < Ž . Ž . Ž .c y dc s f c ,t d t, with c sc q . A24kq 1 k k

ES initial conditions

1

2j jˆ ˆŽ . Ž . Ž . Ž . Ž .c q sc q q E q P q u , js1, . . . ,q, A25k k k k

p=1where ugR is random, of zero-mean
and identity variance, constrained to yield

jˆ Ž .c q ’s in accord with the measurementk
Ž .model A1 .

Ensemble forecast

j j j jˆ ˆ ˆ ˆŽ . Ž . Ž .dc s f c ,t d t, with c sc q , js1, . . . ,q. A26k k

ES forecast

jˆ ˆŽ . w Ž . Ž .xM y s c y yc y , js1, . . . ,q,kq 1 kq1 kq1

1
2Ž . Ž .decomposed into, P y s Ý y˙kq 1 kq1q

Ž .and E y of rank pF q, defined by,kq 1

� Ž . Ž . < Ž Ž ..Ý y , E y SVD M ykq1 kq1 p kq1
TŽ . Ž . Ž .4 Ž .sE y Ý y V y , A27kq 1 kq1 kq1

Convergence criterion

11
22l e T ˜ ˜Ý s P E EPis1 i ž /

Ž .r s G a , A28
p̃ ˜Ý s PŽ .is1 i

where a is a chosen convergence limit
Ž . Ž . Ž .1ye F a F1 , ksmin p, p and s P˜ i

selects the singular value number i.

Ž . Ž .fields, n y , is null. The corresponding tracer error covariance decomposition, P yˆ trc
Ž . Ž Ž . Ž . Ž . Ž . Ž .and E y , is constructed following the first-stage Eqs. A5 , A6 , A7 , A8 , A9 ,trc

Ž . Ž .. Ž .A10 and A11 of Section A.1. The assumptions are: 1 separability in the
Ž .verticalrhorizontal, 2 analytical horizontal correlation, in accord with the horizontal

Ž .scales seen in the residuals, 3 vertical covariance matrix computed from the vertical
Ž .EOFs of the residuals. The resulting fields n q are then used to update the a posterioriˆ

Ž . Ž .ES obtained in Eqs. A18 and A19 . They form a new column of the error sample
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Table 6
Ž .Minimum sample ES variance, linear update subscript k omitted

Dynamical state update:

pˆ ˆ ˆŽ . Ž . Ž Ž .. Ž .c q sc y qK dyCc y . A16

Sample ES Optimal Gain:

T Tp p p p y1 pŽ . Ž Ž . . Ž .K sE P y C C P y C qR , where C sCE . A17˙y y

Sample ES Cov. Update:

T TT p p p y1 pŽ . Ž . Ž . Ž Ž . . Ž . Ž .H P q H s P y y P y C C P y C qR C P y . A18

Ž .E sE H. A19q y

w Ž . Ž .x n= Ž pq1.matrix E Ý q ,n q eR . At each assimilation time t , the size of the currentˆq k
Ž Ž .ES is increased by one and the dominant error decomposition re-evaluated Eqs. A22

Ž ..and A23 .
Ž . Ž . a aŽ .In Eqs. A22 and A23 , E and P q are the adapted error vectors and values,q

which have learned the significant tracer a posteriori residuals. In Section A.4, we refer
to this adapted ES simply as the ‘‘a posteriori ES’’, without the superscript a.

A.4. State and ES forecasts

ˆ Ž . Ž . Ž .The quantities c q , E q and P q , obtained in Sections A.2 and A.3, arek k k
ˆ Ž . Žnow forecast to t . The state forecast c y is here set to the central forecast Eq.kq1 kq1

Ž .. Ž .A24 , which is the first-order estimate of the statistical mean state Jazwinski, 1970 .
The ES is evolved by integrating to t an ensemble of js1, . . . ,q perturbed states,kq1

Table 7
Ž .Adaptive learning of the error subspace subscript k omitted

ˆŽ . Ž Ž .. Ž .n q sK dyCc q , A20ˆ trc

T T y1Ž . Ž . Ž Ž . . Ž . Ž .K sE y P y C C P y C qR , where C sCE y . A21˙trc trc trc trc trc trc trc trc trc

a a aTŽ . Žw Ž . Ž .x. Ž .E Ý q V sSVD E Ý q , n q , A22ˆq q pq1 q

1
a a2Ž . Ž . Ž .P q s Ý q . A23

qq1
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ˆ jŽ . Ž . Ž .c q , that sample the a posteriori error vectors E q with variances P q ; thek k k
ˆ pŽ . Ž . Ž Ž ..ensemble covariance matrix from c q then tends to P q for q ™ ` Eq. A25 .k k

ˆ jŽ .The data residuals of all c q ’s are here also constrained to be in close accord withk
ˆ jŽ .the measurement errors: the c q which have residuals of horizontal-averaged vari-k

Ž Ž ..ance larger than twice the local data error variance are rejected Eq. A25 . While
Ž Ž ..ensemble forecasts are computed in parallel Eq. A26 , the SVD of the current error

ˆ j ˆ n=qŽ . w Ž . Ž .x Ž Ž ..forecast matrix, M y s c y yc y eR , is evaluated Eq. A27 .kq1 kq1 kq1

Integrations are stopped when the dominant SVD of these error samples stabilizes. This
Ž . Ž .is here measured by the similarity coefficient r defined by Eq. A28 , where E, P of

˜ ˜Ž .rank p and E, P of rank pGp define ‘‘previous’’ and ‘‘new’’ estimates of the ES˜
˜ ˜Ž .forecast, respectively. When r is close enough to one, the resulting E, P determine

Ž Ž . Ž ..the ES forecast for t , P y , E y , to be used as in Section A.2. Thekq1 kq1 kq1
Ž . Ž .dimensions of the ensemble q and ES p hence vary with time, in accord with data

and dynamics. In passing, the nonlinearities ensure that each new linearly perturbed state
ˆ jŽ . Ž Ž ..c q Eq. A25 has the potential to add new value to the ES forecast.k
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