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Advanced Ocean Prediction Systems



HOPS/ESSE System

Error Subspace Statistical EstimationHarvard Ocean Prediction System



PAA PAO PAB

P =   POA POO POB

PBA PBO PBB

Coupled Interdisciplinary Data Assimilation

Physics:  xO = [T, S, U, V, W]

Biology:  xB = [Ni, Pi, Zi, Bi, Di, Ci]

Acoustics:  xA = [Pressure (p), Phase (ϕ)]

x = [xA xO xB]

P = ε {(x – x t ) ( x – x t )T}ˆ ˆ Coupled error covariance
with off-diagonal terms

Unified interdisciplinary state vector



Coupled Physical-Acoustical Data Assimilation of real TL-CTD data:
Transmission Loss measurements affect TL and Sound Speed everywhere.

Source

Receivers
(VLA)



MREA-03 Mini-HOPS

MREA-03 Domains

• Designed to locally solve the problem of accurate 
representation of sub-mesoscale synopticity

• Involves rapid real-time assimilation of high-resolution data in 
a high-resolution model domain nested in a regional model

• Produces locally more accurate oceanographic field estimates 
and short-term forecasts and improves the impact of local field 
high-resolution data assimilation

• Dynamically interpolated and 
extrapolated high-resolution 
fields are assimilated through 
2-way nesting into large 
domain models 

In collaboration with Dr. Emanuel Coelho 
(NATO Undersea Research Centre)



MREA-03 Mini-HOPS

• From the super-mini domain, 
initial and boundary conditions 
were extracted for all 3 mini-
HOPS domains for the following 
day and transmitted to the NRV 
Alliance.

• Aboard the NRV Alliance, the 
mini-HOPS domains were run 
the following day, with updated 
atmospheric forcing and 
assimilating new data.

• Regional Domain (1km) run at Harvard in a 2-way nested 
configuration with a super-mini domain.

– Super mini has the same resolution (1/3 km) as the mini-HOPS 
domains and is collocated with them

Mini-HOPS simulation run aboard 
NRV Alliance in Central mini-HOPS 

domain (0m temperature and velocity)



Harvard Ocean Prediction System AOSN-II Fields

30m Temperature: 10 - 30 August 2003 (4 day intervals)

10 Aug 14 Aug 18 Aug 22 Aug

26 Aug 30 Aug



Multi-Scale Energy and Vorticity Analysis
MS-EVA is a new methodology utilizing 
multiple scale window decomposition
in space and time for the investigation 
of processes which are:
• multi-scale interactive
• nonlinear
• intermittent in space
• episodic in time

Through exploring:
• pattern generation and 
• energy and enstrophy

- transfers
- transports, and
- conversions

MS-EVA helps unravel the intricate relationships between events on different 
scales and locations in phase and physical space. Dr. X. San Liang



M-S. Energy and Vorticity Analysis
Two-scale window decomposition in space and time of energy eqns: 11-27 August 2003

Transfer of APE from
large-scale to meso-scale

Transfer of KE from
large-scale to meso-scale

• Center west of Pt. Sur: winds destabilize the ocean directly.
• Center near the Bay: winds enter the balance on the large-scale window and release energy to the 

meso-scale window during relaxation. X. San 
i



Strategies For Multi-Model Adaptive Forecasting
Multi-Model Ensemble Estimates of Fields and Errors

• Error Analyses: Learn individual model forecast errors in an on-line fashion 
through developed formalism of multi-model error parameter estimation

• Model Fusion: Combine models via Maximum-Likelihood based on the 
current estimates of their forecast errors

3-steps strategy, using model-data misfits and error parameter estimation

1. Select forecast error covariance       and bias       parameterization 

2. Adaptively determine forecast error parameters from model-data misfits
based on the Maximum-Likelihood principle:

3. Combine model forecasts      via Maximum-Likelihood based on the current 
estimates of error parameters   (Bayesian Model Fusion)         O. Logoutov

Where                                  is the observational data



Two Models and Data Combined via Bayesian Fusion

ROMS and HOPS individual SST forecasts and the NPS aircraft SST 
data are combined based on their estimated uncertainties to form the 
central forecast

A new batch of model-data misfits and priors on uncertainty parameters 
determine via the Bayesian principle uncertainty parameter values that 
are employed to combine the forecasts.



ESSE Surface Temperature Uncertainty Forecasts

Aug 12 Aug 13

Aug 27Aug 24

Aug 14

Aug 28

End of Relaxation Second Upwelling period

First Upwelling periodStart of Upwelling

•Real-time consistent error forecasting, data assimilation and adaptive sampling (1 month)
•ESSE results described in details and posted on the Web daily (see AOSN-II page at HU)



Adaptive Sampling e.g. to

ESSE fcsts. after 
DA of each track

Aug 24 Aug 26 Aug 27

2-day ESSE fct

ESSE for Track 4

ESSE for Track 3

ESSE for Track 2

ESSE for Track 1DA 1

DA 2

DA 3

DA 4

IC (nowcast) DA

Best predicted relative error reduction: track 1

• Concentrating resources in regions of 
important dynamical events (dynamical 
hot spots)

Control Uncertainty Optimize Dynamical Knowledgeor
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Towards Real-time Adaptive Physical and Coupled Models

• Model selection based on quantitative dynamical/statistical study of data-model misfits

• Mixed language programming (C function pointers and wrappers for functional choices) to be 
used for numerical implementation

• Different Types of Adaptation:
• Physical model with multiple parameterizations in parallel (hypothesis testing) 
• Physical model with a single adaptive parameterization (adaptive physical evolution)

• Adaptive physical model drives multiple biological models (biology hypothesis testing)
• Adaptive physical model and adaptive biological model proceed in parallel



Harvard Generalized Adaptable Biological Model



Nitrate 
(umoles/l)

Chl 
(mg/m3)

Chl of 
Total P (mg/m3)

Chl of 
Large P

A priori configuration of generalized model on Aug 11 during an upwelling event

Towards automated quantitative model aggregation and simplification

Simple NPZ configuration of generalized model on Aug 11 during same upwelling event

Chl of 
Small P

Zoo 
(umoles/l)



Web-Enabled Configuration and Control of HOPS/ESSE

• Metadata for 
handling legacy 
software

• eXtensible Markup
Language (XML) 
Encapsulation for 
Legacy Binaries

• Java-Based GUI for 
Legacy Binaries

Many setups and parameters for physical, biological and acoustical models.

Evangelinos, et al.
Ocean Modeling, 2006.

Graphical User Interface Developed for HOPSSoftware and GUI 
that controls 
adequacy and 
compatibility of 
options and 
parameters, at 
build-time and at 
run-time



Interdisciplinary
Coupled Physical-Acoustical-Biological Multivariate Data Assimilation

Multiscale
Energy and Vorticity Analysis, Mini-HOPS

Ensemble and Multi-Model Based
Bayesian-based Model Fusion

Automated Adaptive Sampling
e.g. Reduce Uncertainty, Dynamical Hotspots

Automated Adaptive Modeling
Real-time Configurations of Generalized Biological Model

Distributed, Web-Based
GUI for HOPS Run Control Over the Web

Advanced Ocean Prediction Systems
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