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Abstract

Data-driven forecasts and simulations for Massachusetts Bay based on in situ observations collected during August–

September 1998 and on coupled four-dimensional (4-D) physical and biogeochemical models are carried out, evaluated, and

studied. The real-time forecasting and adaptive sampling took place from August 17 to October 5, 1998. Simultaneous synoptic

physical and biogeochemical data sets were obtained over a range of scales. For the real-time forecasts, the physical model was

initialized using hydrographic data from August 1998 and the new biogeochemical model using historical data. The models

were forced with real-time meteorological fields and the physical data were assimilated. The resulting interdisciplinary forecasts

were robust and the Bay-scale biogeochemical variability was qualitatively well represented. For the postcruise simulations, the

August–September 1998 biogeochemical data are utilized. Extensive comparisons of the coupled model fields with data

allowed significant improvements of the biogeochemical model. All physical and biogeochemical data are assimilated using an

optimal interpolation scheme. Within this scheme, an approximate biogeochemical balance and dynamical adjustments are

utilized to derive the non-observed ecosystem variables from the observed ones.

Several processes occurring in the lower trophic levels of Massachusetts Bay during the summer–autumn period over

different spatial and temporal scales are described. The coupled dynamics is found to be more vigorous and diverse than

previously thought to be the case in this period. For the biogeochemical dynamics, multiscale patchiness occurs. The locations

of the patches are mainly defined by physical processes, but their strengths are mainly controlled by biogeochemical processes.

The fluxes of nutrients into the euphotic zone are episodic and induced in part by atmospheric forcing. The quasi-weekly

passage of storms gradually deepened the mixed layer and often altered the Bay-scale circulation and induced internal

submesoscale variability. The physical variability increased the transfer of biogeochemical materials between the surface and

deeper layers and modulated the biological processes.
D 2003 Elsevier Science B.V. All rights reserved.
Keywords: Massachusetts Bay; Real time forecasting; Predictive capability; Interdisciplinary data assimilation; Coastal ecosystem; Summer to

fall blooms

1. Introduction
0924-7963/03/$ - see front matter D 2003 Elsevier Science B.V. All right

doi:10.1016/S0924-7963(03)00018-6

* Corresponding author. Tel.: +90-324-521-2406; fax: +90-324-

521-2327.

E-mail addresses: sukru@ims.metu.edu.tr (S�.T. Bes�iktepe),
pierrel@pacific.harvard.edu (P.F.J. Lermusiaux).
The Massachusetts Bay Sea Trial I (MBST-98) was

conducted in Massachusetts Bay from August 17 to
s reserved.



S�.T. Bes�iktepe et al. / Journal of Marine Systems 40–41 (2003) 171–212172
October 5, 1998 within the framework of the Littoral

Ocean Observing and Predicting System (LOOPS)

project. The central scientific focus was phytoplank-

ton and zooplankton patchiness, in particular their

relationships to physical variabilities. Synoptic phys-

ical and biogeochemical data sets were obtained

simultaneously over a range of spatial and temporal

scales. Real-time interdisciplinary nowcasting and

forecasting were carried out, including data assimila-

tion via optimal interpolation (OI) and error subspace

statistical estimation. Field and error forecasts were

utilized for adaptive sampling with three research

vessels and two fleets of autonomous underwater

vehicles (AUVs). The present study is part of this

LOOPS project. Details on LOOPS and a summary of

MBST-98 are given in Robinson et al. (1999) and

Lermusiaux (2001).

Because of the existence of a variety of processes

with multiple interactive scales (Section 2), Massa-

chusetts Bay is an excellent test arena for coupled

interdisciplinary models. Due to its unique character-

istics involving nearly complete enclosure and

limited size, it is an ideal basin for real-time forecast

studies. Furthermore, an intensive observation and

modeling program has been initiated by the Massa-

chusetts Water Resources Authority (MWRA) to

assess the effect of the Boston sewage discharge on

the regional ecosystem (MWRA, 2001 and referen-

ces cited therein). One component of this program is

the Water Column Monitoring Program, which deals

with the variations in physical water properties,

nutrient concentrations, dissolved oxygen (DO), phy-

toplankton biomass, and phytoplankton and zoo-

plankton community composition in Massachusetts

Bay. Since 1992, the MWRA has collected a large

amount of useful physical and biogeochemical data,

which allow the testing and calibration of dynamical

models. The results of this program are published by

the MWRA’s Environmental Quality Department

(ENQUAD) in a series of technical reports (MWRA,

2001).

Real-time forecasting of coupled physical and

biogeochemical dynamics, and coupled data assimila-

tion are novel. The compatible physical and biogeo-

chemical data sets that were collected during LOOPS

provided an opportunity to develop a methodology for

real-time coupled modeling and coupled data assim-

ilation, as well as to explore coupled dynamics in
Massachusetts Bay. Both methodological and dynam-

ical results are presented here.

The melding of models and data via data assim-

ilation provides estimates of nature, which are better

estimates than can be obtained by using the data or

the model alone. Importantly for ecosystem studies,

dynamical hypotheses can be tested quantitatively.

Data assimilation techniques and methodologies are

well developed in physical oceanography, and gen-

eral references include Bennett (1992), Malanotte-

Rizzoli (1996), Wunsch (1996), Robinson et al.

(1998), and Robinson and Lermusiaux (2001). How-

ever, data assimilation in biology and coupled assim-

ilation are new and under development. Robinson

and Lermusiaux (2002) provide a comprehensive

overview and, additionally, several recent develop-

ments are reported in this special volume. Dickey

(2002) discusses observational capabilities for inter-

disciplinary data assimilation. Important early eco-

system studies that assimilate natural ocean data

involve flux estimations (V’ezina and Pace, 1994),

parameter estimations (Fasham and Evans, 1995;

Matear, 1995; Prunet et al., 1996; Spitz et al.,

1998; Evans, 1999; Hurtt and Armstrong, 1999;

Vallino, 2000; Friedrichs and Hofmann, 2001; Spitz

et al., 2001; Friedrichs, 2002), and field estimations

(Armstrong et al., 1995; McGillicuddy et al., 1998;

Lynch et al., 1998). Anderson et al. (2000) and

Anderson and Robinson (2000) have carried out

coupled physical–biogeochemical hindcasting stud-

ies in the Gulf Stream region with data assimilation.

They found that the assimilation of both physical and

compatible biogeochemical fields was necessary for

the success of their model simulations.

The main technical objective here is to describe

and evaluate real-time and postcruise data-assimila-

tive numerical simulations, which are carried out in

Massachusetts Bay based upon observations col-

lected during August–October 1998 and on four-

dimensional (4-D) physical–biogeochemical models.

The methodological advances and the dynamical

results are described as they are obtained. Specifi-

cally, the use of a priori constraints, including

approximate dynamical balances and data bounds

on model structures and parameters, is shown to be

important, both during the model calibration and

within the assimilation scheme itself. The skill of

the new ecosystem model is evaluated before and
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after data assimilation. For the case without data

assimilation, it is found that, for good-enough initial

data coverage and external atmospheric forcing anal-

yses, the internal predictive capability remains sig-

nificant after a couple weeks. For the dynamics, the

goal is to illustrate and investigate some of the

buoyancy-driven and atmospheric-driven ecosystem

variability. During MBST-98, the buoyancy and

atmospheric forcings, and their interactions, are

found to strongly influence the ecosystem of the

Bay, including the transition from summer to fall

conditions. On days-to-weeks average, the Bay-scale

buoyancy-driven circulation is cyclonic, but meso-

scale and submesoscale variabilities are found to be

vigorous and diverse, which modulates the biological

scales and processes. Successive storm systems pass

over the Bay on quasi-weekly time scales and these

weather events also lead to rapid coupled physical–

biogeochemical variations.

In what follows, the Massachusetts Bay ecosys-

tem is reviewed (Section 2). The coupled dynamical

models, data assimilation approach, and data sets are

then outlined (Section 3). The specifics and several

technical advances are provided in the appendices.

The real-time forecasts and their results are presented

and discussed in Section 4.1, and the postcruise

data-driven simulations (hindcasts) and their results

in Section 4.2. In the latter, special emphases is put

on the initialization of model fields and parameters,

and on data assimilation procedures. Based on these

real-time and postcruise simulations, the ecosystem

evolution and selected coupled processes are

described. A summary of results is provided in

Section 5.
2. Massachusetts Bay ecosystem: scales, processes,

and dynamics

Massachusetts Bay (hereafter ‘‘the Bay’’) is a small

semienclosed embayment (about 50� 100 km)

bounded on three sides by coasts and located at the

western boundary of the Gulf of Maine (Fig. 1).

Stellwagen Bank, which rises to within 25–30 m of

the sea surface, limits the connections to the Gulf of

Maine. The average depth of Massachusetts Bay is 35

m; the maximum depth of 80 m is reached in the

Stellwagen Basin. The southern part of the Bay, Cape
Cod Bay, is shallow (less than 50 m). In the north-

western part, the small embayment east of Boston,

called Boston Harbor, has a surface area of 125 km2

and an average depth of 5 m.

The predominant horizontal flow (Fig. 1) in

Massachusetts Bay is a Bay-scale cyclonic circula-

tion mainly driven by the Maine coastal current and

atmospheric forcings over the Gulf of Maine (Geyer

et al., 1992; Signell et al., 1993; Brown, 1998).

However, as was observed and analyzed during

MBST-98 (Robinson et al., 1999; Lermusiaux,

2001), this cyclonic circulation is far from perma-

nent (e.g., Signell and List, 1997). It is altered by

the local wind forcing and is influenced by buoy-

ancy forcings associated with the variability of the

Gulf of Maine (Wallace and Braasch, 1997; Werme

and Hunt, 2000; Gangopadhyay et al., 2002). For

example, during several days of the summer, strong

winds from the south usually occur (e.g., Libby et

al., 1999). These southerly winds can reverse the

direction of the flow because coastal upwelling

creates thermal-wind-driven rim currents. Such

events were forecast and observed during MBST-

98. It was also found that three branches of the

Gulf of Maine coastal current could occur (Fig. 1):

one is the coastal current around the whole Massa-

chusetts Bay, one enters the northern half of the

Bay but not Cape Cod Bay, and one flows along

Stellwagen Bank, without entering the Bay at all.

Each of these branches may or may not be present

at any time. Two gyres are often present, one in

Cape Cod Bay and another to the north of Stellwa-

gen Basin, but their size, position, and sense of

rotation are variable. The mesoscale and submeso-

scale variabilities of these circulation features were

also found to be more energetic than previously

described.

Nutrients are advected into the Bay by the Gulf of

Maine coastal current and its river inputs. The local

sources of nutrients are the rivers discharging into

Boston Harbor. The total nitrogen load in the harbor is

about 6.6� 105 kmol year� 1 (Kelly, 1998). A small

portion (0.2� 105 kmol year� 1) of this load is

removed via denitrification to the sediments and

burial (Nowicki et al., 1997), but most of the nitrogen

entering the harbor is exported to the Bay (Kelly,

1997) because the high rates of anthropogenic nutrient

inputs to the harbor exceed the capacity of the sedi-



Fig. 1. Cartoon of horizontal circulation patterns for stratified conditions in Massachusetts Bay, overlying topography in meters (thin lines), after

Lermusiaux (2001) and Robinson and Lermusiaux (2001). The patterns drawn correspond to main currents in the upper layers of the pycnocline

where the buoyancy-driven component of the horizontal flow is often the largest. These patterns are not present at all times. The most common

patterns are in solid lines, the less common are dashed. The black dashed line from south to north along the Bay is the position of all vertical

cross-sections shown in the text. Geographical locations and topographic features mentioned in the text are also shown.
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ment to remove nutrients through denitrification and/

or burial (Giblin et al., 1997). The harbor’s water

residence time is short, on the order of days (Kelly,

1998). Considering annual scales, Massachusetts Bay

is relatively well mixed from November to April and

the whole water column is then rich in nutrient.
Following the spring bloom, the water is stratified.

The summer–early autumn season is thus usually

characterized by low nutrient concentrations in the

surface layers. During May through October, nutrients

below the thermocline steadily increase due to regen-

eration processes, sinking of detritus, and lack of
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vertical mixing. The stratification of the water column

also leads to a decrease of dissolved oxygen in bottom

waters. However, the rate of oxygen decline is about

0.025 mg l� 1 day� 1 and the minimum dissolved

oxygen measurements are around 4–6 mg l� 1 (Kelly

and Doering, 1999): the decrease in DO is not

sufficient to cause hypoxia (Werme and Hunt, 2000).

The annual cycle of phytoplankton in the Bay

includes biomass peaks in winter–spring and fall,

which is characteristic of temperate midlatitude

coastal waters (Keller et al., 2001; Kelly and Doering,

1997). Variable production occurs in summer, in part

due to southerly wind events, which trigger coastal

upwelling blooms (Libby et al., 1999; Robinson et al.,

1999). Annual primary production ranged from a low

of 160 g C m� 2 year� 1 to a high of 787 g C m� 2
Fig. 2. Schematic o
year� 1 from 1992 to 1997 (Keller et al., 2001).

Diatoms and microflagellates are numerically the

most abundant phytoplankton assemblages through-

out the year (Libby et al., 1999). Diatoms are the

major fraction of the biomass. The winter–spring

bloom is dominated by diatoms. Since the whole

water column is relatively rich in nutrients from

November through April, the bloom is light-limited.

However, grazing pressures on phytoplankton can

suppress this winter–spring bloom as observed during

1998 (Libby et al., 1999; Werme and Hunt, 2000;

Keller et al., 2001). After the spring bloom, high

chlorophyll a (Chl-a) concentrations are restricted to

subsurface layers throughout most of the summer.

Microflagellates reach their peak abundance during

the summer. Small athecate microflagellates are usu-
f the HOPS.
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ally the dominant phytoplankton during August. In

October, diatoms become again dominant, along with

microflagellates and cryptomonads (Turner, 1992).

The MBST-98 experiment occurred during this sum-

mer-to-fall transition.

The zooplankton assemblage is dominated by

copepods and copepod nauplii (Turner, 1992). These

zooplankton communities are typical of North Atlan-

tic coastal assemblages, which are advected into the

Bay by the Gulf of Maine coastal current. However,

local zooplankton populations are possible (Turner,

1992). During 1998, the zooplankton abundance

peaked in May near the coast and remained moder-

ately high until December, but did not reach the high

values measured on many other years (Werme and

Hunt, 2000).
3. Estimation approach

3.1. Models and data assimilation methodology

The Harvard Ocean Prediction System (HOPS)

was used for the physical–biogeochemical forecast-

ing during MBST-98. Its main dynamical compo-
Fig. 3. Schematic representation of the se
nents are illustrated on Fig. 2. The system consists of

coupled dynamical models, statistical models, initi-

alization procedures, data assimilation schemes, and

various visualization and postprocessing tools (Rob-

inson, 1996; Lozano et al., 1996; Haley, 1996;

Lermusiaux, 1997; Djurcilov et al., 2002). HOPS is

a portable and generic system for interdisciplinary

nowcasting, forecasting, and data-driven simulations.

It has been applied to many regions including ship-

board forecast experiments with verification of skill

(Robinson, 1999; Lermusiaux et al., 1999; Robinson

et al., 2002).

Presently, the physical model is based on 4-D

primitive equation (PE) dynamics (see Appendix

A.1 for details). The biogeochemical model coupled

to the physical model consists of 4-D advection–

diffusion-reaction (ADR) equations for seven state

variables governing phytoplankton, zooplankton,

detritus, nitrate, ammonium, and chlorophyll a. It

was, in large part, designed for the MBST-98 experi-

ment and it is schematized in Fig. 3. The development

of the new coupled modeling system, including meth-

odologies for the calibration of the biogeochemical

model structures and parameters, is an essential com-

ponent of the present study. Several of the modeling
ven-compartment ecosystem model.
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advances and improvements are mentioned in Section

4, but critical details on the technical results are

presented in Appendix A. These includes the new

biogeochemical equations and their parameters

(Appendix A.2, Tables 1–2), and the new vertical

interdisciplinary boundary conditions (Appendix A.3).

Data assimilation strategies in a forecast system

provide the means for model initialization and update,

melding of model fields and primary data, tuning of

model parameters, and provision of error estimates.

Here the optimal interpolation scheme of HOPS is

employed to assimilate the synoptic data (Section 3.2)

in the ecosystem simulations. The data forecast meld-

ing step of this OI scheme consists of a two-scale
Fig. 4. Model domain and position of sampling stations used to initialize

MBST-98 (August 17–21, 1998) andMWRA cruises (August 18–25, 1998
objective analysis (OA) of the observations, followed

by a blending of the forecast with the OA fields

(Robinson, 1996; Lozano et al., 1996; Lermusiaux,

1999). Further details are provided in Appendix A.4.

This OI scheme is directly applicable to the state

variables for which there are data. However, since not

all variables are observed (Appendix B), not all

variables can be directly objectively analyzed and

then assimilated in accord with error fields. It is

nonetheless necessary to infer estimates for the non-

observed variables that are compatible with the

observed ones, in part to avoid dynamical shocks.

The new interdisciplinary procedure (Section 4) that

was developed for this study computes a first guess at
the model. (a) Hydrographic data were collected in real time during

) (b–d). Biochemical data are MWRA data collected in August 1995.



Fig. 5. Composite profiles of (a) temperature (jC); (b) salinity (ppt);
(c) nitrate (Amol N l� 1); (d) ammonium (Amol N l� 1); (e)

chlorophyll a (mg Chl m� 3) used in the real-time model

initialization (station positions shown on Fig. 4).
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a non-observed three-dimensional (3-D) field based

on approximate relationships between the observed

and non-observed variables: the observed variables

are first objectively analyzed and the relationships are

then used to deduce the first guess at the non-observed

3-D fields. These first-guess fields are then dynam-

ically adjusted to yield initial conditions or assimila-

tion fields, which are consistent with all available data

and dynamics.

3.2. Data sets: real-time and postcruise

There are important differences between the data

sets used for the real-time and postcruise simulations.

The processing and calibration of the biogeochemical

components of the MBST-98 and August–October

1998 MWRA data sets were only completed after the

real-time experiments. In the real-time simulations

(Section 4.1), no biogeochemical data were thus

assimilated. However, the August–October 1998

physical data were utilized and assimilated in the PE

model, which forced the biogeochemical model. The

calibration and initialization of this real-time biogeo-

chemical model were based on the August 1995

MWRA data. In the postcruise simulations (Section

4.2), both physical and biogeochemical data are

assimilated. The postcruise biogeochemical model is

calibrated and initialized based on these August–

October 1998 data. Some historical data are also used

to initialize offshore regions.

A summary of all historical and synoptic data sets

employed and the references for details on these data

sets are provided in Appendix B. The data utilized for

the real-time initialization are described next. For the

postcruise simulations, the initialization data are out-

lined in Section 4.2.1 (Fig. 11) and the assimilation

data for September 2–4 are outlined in Sections 4.2.2

and 4.2.3 (Fig. 15).

The positions of the hydrographic stations and the

corresponding composite profiles, which were used to

initialize the physical model in real-time, are shown

on Figs. 4a and 5a and b, respectively. These T and S

data were collected during the August 17–21 MBST-

98 and August 18–25 MWRA surveys. The positions

of the MWRA August 1995 biogeochemical stations

are given in Fig. 4b–d; the composite vertical profiles

are shown on Fig. 5c–e. The rationale used to choose

this August 1995 data set for the initialization of the
August 1998 biogeochemical state is important. It is

based on our approach, which uses historical synoptic

data that most likely reflect the anticipated real-time

situation. In the present case, the year 1995 was

selected because the average primary production dur-
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ing February–April 1995 was low and similar to that

of February–April 1998 (based on a preliminary

analysis of MWRA data for that spring). One could

thus expect that the properties of the real-time data to

be collected during late August 1998 were going to be

similar to those of the August 1995 data, at least on

the Bay scales. Therefore, the August 1995 data were

used for the initialization. Based on a recent detailed

study by Keller et al. (2001), this real-time choice can

be confirmed as being relatively good.

During late summer, the water column is well

stratified (Fig. 5a and b). This stratification was

especially pronounced in 1998 (Libby et al., 1999;

Keller et al., 2001). Although there are spatial varia-

bilities in the data (Fig. 5), vertical profiles have

similarities over the whole basin. On average, in late

summer 1998, the mixed layer extended to a depth of

2–10 m and the thermocline and halocline are located

between 2 and 20 m. The nutricline starts around 15–

20 m, with nitrate concentration increasing from 1–2

to 12 Amol N l� 1 near the bottom. The Chl-a maxima

are located around 15 m and the ammonium maxima

around 20 m. This picture is in agreement with the

expected biogeochemical processes occurring in the

water column. During this late summer period, Chl-a

concentrations were relatively low in surface waters.

Subsurface Chl-a maxima occurred near the middle of

the thermocline, usually in synchronization with phys-

ical submesoscale and mesoscale variabilities. At

some locations, relatively pronounced maxima were

observed. Along the coastline and in the shallows of

Cape Cod Bay, Chl-a maxima were near or at the

bottom. Overall, all biogeochemical concentrations

are low near the surface, except around Boston Harbor

where ammonium reaches its maximum.
4. Results

4.1. Real-time forecasts and evaluations

Based upon data assimilation, the coupled phys-

ical–biogeochemical models were used to construct

realistic physical fields and robust biogeochemical

fields. For the physical predictions, detailed skill

was an objective, from the mesoscales to the Bay

scales. It was found that the accuracy of the physical

forecasts and the duration of this accuracy (i.e., limit
of predictive capability) varied with the strength and

accuracy of the atmospheric forcings. In summary, for

medium to strong atmospheric forcings, the accuracy

of the ocean forecasts was largely dependent on the

accuracy of the US Navy Fleet Numerical Meteor-

ologie and Oceanographic Center (FNMOC) fields.

Most of the time, the 1- to 2-day FNMOC forecasts

were then good and so were the ocean forecasts.

Beyond 2 days, errors in the predicted atmospheric

forcings led to ocean predictions of low to zero skill,

or phase errors occurred in the prediction. For the

periods of weaker atmospheric forcings, which usu-

ally occurred in between wind events and lasted for

about a week, the situation was different. Because of

the longer internal predictability limit and PE model

accuracy, the physical ocean forecasts were then good

for 5–10 days. More details are presented in Robin-

son et al. (1999), Lermusiaux et al. (1999), and

Lermusiaux (2001).

For the ecosystem predictions, detailed skill was

not a real-time objective because calibrated biogeo-

chemical data were not available in real-time, not even

for initialization (Section 3.2), and because the four-

dimensional dynamics of the summer-to-fall transition

was relatively unknown. The goals were thus to: (i)

simulate the overall behavior of Bay-scale biogeo-

chemical responses to physical forcings and to pro-

duce robust biogeochemical forecasts (Section 4.1.3);

and (ii) provide an operational methodology for rapid

ecosystem field and parameter estimates based on a

relatively simple initialization procedure (Sections

4.1.1 and 4.1.2).

4.1.1. Real-time calibration and selection of model

parameters

The biogeochemical model (Appendix A.2)

requires the specification of 30 parameters (Table 2

in Appendix A.2), which define the transfer of

nitrogen between the state variables. For the real-

time simulations, values for primary production

parameters (PAR:total surface irradiance, photosyn-

thesis rate, initial slope of P/I curve) and Chl-a

equation parameters (Chl:C ratio, N:C ratio of phy-

toplankton) were obtained from past measurements

in Massachusetts Bay (Kelly and Doering, 1997;

Murray et al., 1997; Werme and Hunt, 2000). Pure

water light attenuation scale is a constant and has a

value of 0.038 m� 1 (Wroblewski, 1977). The value



Table 3

Real-time biogeochemical model initialization

Fields Initialization procedure

Observed

variables

(historical data)

Chl(x,y,z) (i) Calibrate fluorometer data

to Chl

(ii) OA of resulting Chl data

NO3(x,y,z) OA of observed NO3 data

NH4(x,y,z) OA of observed NH4 data

Non-observed P(x,y,z) Chl(x,y,z)hChl
ChC

N/12

variables

(computed from

PNO3
P�NO3(x,y,z)/(NO3(x,y,z) +

NH4(x,y,z))

observed ones) PNH4
P�NH4(x,y,z)/(NO3(x,y,z) +

NH4(x,y,z))

Z(x,y,z) 0.5�P

D(x,y,z) 0.05�P
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of the Chl-a (phytoplankton) light attenuation scale

is given within 0.02–0.04 m2 (mg Chl)� 1 by Fasham

et al. (1990) but can be as high as 0.07 m2 (mg

Chl)� 1 in coastal regions (Wroblewski, 1977). The

rest of the model parameters listed in Table 2 (see

Appendix A.2) were obtained from modeling studies

in the eastern coast of the US (Kremer and Nixon,

1978; Hofmann and Ambler, 1988) and the open

ocean modeling study of Fasham et al. (1990). The

parameters related to the life cycles of phytoplank-

ton and zooplankton are highly variable and depend

on the species history and environmental conditions.

Ranges of values commonly used in the literature

and summarized in Fasham et al. (1990) and Kremer

and Nixon (1978) are given in Table 2. The values

employed here were chosen based on these ranges,

on the analyses described in (Kremer and Nixon,

1978), and on the sensitivity studies described below.

The values of the settling (sinking) rates for phyto-

plankton (detritus) and the parameters involved in

the exchanges between the water column and the

sediments are usually difficult to find in the liter-

ature. For the real-time simulations, these parameter

values were determined based on simple sensitivity

studies (in the postcruise simulations, the formula-

tions of the bottom boundary conditions were im-

proved).

Real-time simulations were carried out to select

some ecosystem model parameters and to assess the

sensitivity of the model to biogeochemical factors. To

do so, the biogeochemical model was initialized over

the whole domain based on the available profiles

(Section 3.2) but only one-dimensional (z, t) versions

of the model were run forward, for 1 month. During

such runs with different parameters, the model was

only forced with short-wave radiation. The aim was to

determine a set of parameters adequate for the 1998

summer time biota and interactions. The parameters

without reference in Table 2 were obtained from these

calibrations.

4.1.2. Real-time initialization

The real-time initialization is carried out in two

phases. For a first-guess estimate of the initial phys-

ical and biological fields, the observed variables are

mapped into 3-D fields by objective analyses (Appen-

dix A.4) and the non-observed 3-D fields are com-

puted from these objective maps, using approximate
relationships between observed and non-observed

variables. These first-guess fields are then dynami-

cally adjusted to yield initial conditions with balanced

velocities and biogeochemical fields.

The first guess at the initial physical fields was

obtained for August 17 by assuming velocities in

geostrophic balance with the objective analyses of

the T and S data (Section 3.2) and by imposing a

barotropic transport streamfunction along open boun-

daries (Lermusiaux, 2001). The first-guess at the

initial NO3, NH4, and Chl fields (Table 3) was

computed by objective analyses of historical data

(Section 3.2). The remaining biological fields (Table

3) were derived from these objectively analyzed

data. For the real-time simulations, phytoplankton

biomass in terms of nitrogen was computed from

Chl-a using carbon-to-chlorophyll (C:Chl) and car-

bon-to-nitrogen (C:N) ratios. The C:Chl ratio is

highly variable in the literature and an average

estimate of 40 mg C (mg Chl)� 1 was used in our

real-time calculations (Table 2). This value was

chosen according to past POC and Chl-a measure-

ments in the basin (Libby et al., 1999).

The C:N ratio (1/hC
N in Table 2) was taken as 6.625

Amol C (Amol N)� 1 (Redfield et al., 1963). The

zooplankton data available were sparse and in the

form of abundance. A first guess at the initial zoo-

plankton field was thus simply chosen to be a fraction

(50%) of the phytoplankton biomass field. There were

no direct measurements of detritus. Since, in the

model (Appendix A.2), detritus is produced as a result



Table 4

Real-time objective analyses scales

Correlation scale Time s
(day)

Zero

crossing

D0 (km)

E-folding

DS (km)

Physical fields

Bay scale l 60 25

Mesoscale 7 20 6.5

Biogeochemical fields

Large scale l 600 400

Bay/large mesoscales l 30 15
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of biological activity, the initial detritus distribution

was assumed to be similar to those of the phytoplank-

ton and zooplankton. With this approximation, the

first-guess initial detritus field was set to be propor-

tional to the phytoplankton field. Its magnitude was

tuned based on comparing PON and Chl-a measure-

ments (Libby et al., 1999) and was set to 5% of the

phytoplankton biomass.

The time and space decorrelation scales (Appendix

A.4) used to grid the physical (T and S) and biogeo-

chemical fields are given in Table 4. In the real-time

experiment, the scales of the biogeochemical OAs

were chosen to be larger than those of the physical

OAs. This is to accommodate for the lower resolution

of the historical biogeochemical data (see Section 3.2

and Fig. 4) and for the fact that these data are not

synoptic to August 1998 (i.e., their mesoscale and

submesoscale biogeochemical features are uncertain-

ties). Basically, the initial biogeochemical fields

aimed to represent the Bay scales and some of the

larger mesoscale features.

To illustrate the resulting first guess at the initial

fields, salinity, chlorophyll a, nitrate, and ammo-

nium cross-sections along the main axis of Massa-

chusetts Bay are shown on Fig. 6. The other

biogeochemical fields are all proportional to Chl-a

(Table 3) and are not shown. Due to the Bay-scale/

large-mesoscale scales used in the objective analysis

(Table 4), the biogeochemical fields are relatively

smooth, but due to the uneven distribution of the

stations over the basin (see Fig. 4), they are not

dynamically consistent with each other everywhere.

For example, Chl-a peaks in the central part of the

basin (Fig. 6b) while NH4 is more patchy and is

largest at the periphery of the basin. The Chl-a

maxima in this section are near 10 m, but extend from

2 to 20 m depth.
The initial physical and biogeochemical model

fields should be dynamically consistent to avoid

shocks at the start of the forecast. The first guess

at these initial fields (Fig. 6) was thus dynamically

adjusted in two steps as follows. The physical model,

initialized with the first-guess physical fields, was

first run for 5 days (from August 17 to August 22) to

adjust the vertical velocities. During this physical

adjustment, ageostrophic vertical velocities arise,

which is important for biogeochemical forcings.

Due to the limited sampling in August 1995 (Fig.

4b–d), errors in the measurements, and very approx-

imate initialization formulas (Table 3), the first guess

at the initial biogeochemical fields (Fig. 6) is also

not compatible everywhere, nor is it adjusted to the

dynamical model structures and parameters. To

adjust these fields, the 3-D biogeochemical model

was run for 10 days without advection. The only

physical processes allowed were the vertical diffu-

sion and the daily light forcing. This second adjust-

ment aimed to obtain biogeochemical fields and

processes that are in dynamical equilibrium among

themselves.

The above two dynamical runs are said to occur

in the ‘‘adjustment space’’ (Anderson and Robinson,

2000), as opposed to ‘‘data space’’ and ‘‘simulation

space.’’ The final states of these biogeochemical and

physical adjustments were used as the initial con-

ditions of the coupled model simulations. Their

spatial distributions are illustrated on Fig. 7. As

expected for late summer conditions, the water

column is well stratified. On average, the mixed

layer extends to a depth of 2–8 m, with a thermo-

cline near 10 m. By construction, the initial biogeo-

chemical fields are smooth. The Chl-a maximum

(reaching about 2 mg m� 3 Chl) is generally around

20–25 m, near the lower pycnocline. The nutricline

is typically just below the Chl-a maximum and

nitrate increases towards the bottom. The ammonium

distribution shows trends similar to those of nitrate.

Both nutrients are depleted within the mixed layer

and the biological production in the euphotic zone is

nutrient-limited. During August to early September,

the production is mainly controlled by physical

processes at the thermocline, which bring nutrients

to the euphotic zone. The nutrient inputs to the

euphotic zone by benthic flux are limited due to

the strong pycnocline.



Fig. 6. Vertical cross-sections from south to north along Massachusetts Bay in the objective analyses of the measured variables: (a) salinity (ppt);

(b) chlorophyll a (mg Chl m� 3); (c) nitrate (Amol N l� 1); (d) ammonium (Amol N l� 1). These fields illustrate the (nonadjusted) first guess at the

initial conditions.
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4.1.3. Real-time simulations: ecosystem evolution and

processes

The coupled model simulation reported here was

the final one being carried out in real time. It is

conducted nominally for the period August 17–Octo-

ber 5, 1998. The adjustment of the initial biogeo-

chemical fields to the physical advection, surface

atmospheric forcings, and assimilation of the August

17–21 physical data takes place within the first 5–10
days of the simulation. During this period, biogeo-

chemical features become tighter and submesoscale

and mesoscale variability is created. Once this initial

period is passed, biogeochemical variables reach a

more realistic dynamical equilibrium, which consists

of biogeochemical fields that slowly vary in accord

with the physical dynamics and fluctuate in accord

with the daily light variations. In this presentation,

results from days 10 and 30 are discussed to illustrate



Fig. 7. Vertical-cross sections from south to north along Massachusetts Bay in the (adjusted) fields used to initialize the model in real time: (a)

temperature (jC); (b) salinity (ppt); (c) vertical velocity (m day� 1); (d) nitrate (Amol l� 1 N); (e) chlorophyll a (mg m� 3 Chl); (f) ammonium

(Amol l� 1 N); (g) detritus (Amol l� 1 N); (h) zooplankton (Amol l� 1 N).
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the evolution of the biogeochemical variables (Figs. 8

and 9).

A comparison between the initial and simulated

biogeochemical fields on day 10 (Figs. 7 and 8) shows

some remarkable differences. The simulated fields

display smaller-scale structures and their local max-

ima are larger. The Chl-a maxima were moved up

from 25 to 15 m, and the magnitudes of these maxima

increased from about 2 to 3 mg m� 3 Chl. The

increase in the magnitude of local maxima and

upward movement of the other variables is also

evident except for nitrate. The vertical distribution

of the nitrate field on day 10 generally reflects initial

conditions and its modification is due to vertical

advections, sinking of detritus, settling of phytoplank-

ton, and ammonium nitrification. The upward and

downward motions in the water column exert strong

effects on the biological activity as upward motions

can bring nutrient-rich water in the euphotic zone

while downward motions can move the nutricline and

phytoplankton out of the euphotic zone.

The simulated evolution of the biogeochemical

fields during days 0–10 shows that even though

(sub)mesoscale and mesoscale structures were not

present in the initial conditions, the real-time models

with physical data assimilation were capable of creat-

ing and maintaining spatial and temporal scales as

those expected in Massachusetts Bay based on local

measurements (e.g., Libby et al., 1999). The model

thus had statistical skill. However, the model had

deterministic skill (i.e., forecast the right feature at

the right time and place) only at the Bay scales. This is

because no in situ synoptic biogeochemical data were

utilized in real time and such data are necessary to

control the uncertainties at smaller scales.

On day 10, the scales of Chl-a are relatively similar

to those of the zooplankton (the value of the Ivlev

constant has logically a strong influence on this

similarity; Tables 1 and 2 in Appendix A.2). These

Chl-a and Z scales are found to be consistent with the

scales of physical processes (Fig. 8a–c), mainly

imposed by vertical and horizontal velocities. At the

base and below the euphotic zone, the scales of NO3,

NH4, and detritus seem, however, not as synchronized

with the physical scales. Biogeochemical processes

are there important in controlling the distribution of

nutrients through nutrient uptakes, excretion by phy-

toplankton, and regenerative processes.
During most of the MBST-98, in the real-time

simulations, the depth of the euphotic zone was on

average deeper than the mixed layer depth, which

agrees with the August–September 1998 MWRA data

(Libby et al., 1999, 2000; Keller et al., 2001) even

though these data were not utilized (Section 3.2). In

between these depths, where light and nutrient inputs

are sufficient, photosynthesis exceeds phytoplankton

loss, which leads to patches of phytoplankton growth.

The nutrient enrichments within these depths were

here mainly controlled by physical processes. The

nutrient variations and patches thus usually had phys-

ical scales at these depths and so did the correspond-

ing phytoplankton patches (e.g., Fig. 8). Below the

mixed layer, ammonium concentrations increase due

to typical regenerative processes. By day 10 (Fig. 8f),

the ammonium field indicates that the concentrations

in the productive surface layers (euphotic zone) are

around 0.1–0.3 Amol l� 1 N. Below the euphotic

zone, they reach 1.5–3 Amol l� 1 N. Strong vertical

stratification favors the accumulation of phytoplank-

ton at depths optimal for growth. This optimal depth

depends on the availability of nutrients and PAR and,

on day 10, it is near 15 m. At the northern boundary

(right sides of figures), upwelled water brings cold

and nutrient-rich water to the surface. Consequent

blooms in phytoplankton and zooplankton growth

are thus observed.

At the end of the simulation, autumn conditions

start to dominate, but on September 21 (Fig. 9), not

enough strong wind events have yet occurred, and the

water column is only partially mixed. The autumn

bloom has not yet fully developed everywhere. Dur-

ing September, the mixed layer gradually deepens

and, on September 21, it displays a downward incli-

nation from north to south (Fig. 9a and b). The nitrate

concentration has increased below the pycnocline due

to nitrification and sinking of PON to the bottom (Fig.

9d). In the northern region, high ammonium is

observed just below the high Chl-a patch.

4.2. Postcruise simulations and analyses

After the real-time experiments, the August–Octo-

ber 1998 raw biogeochemical data were processed and

calibrated (Section 3.2). More than 500 postcruise

simulations were then carried out based on these

synoptic data. These model calibrations involved



Fig. 8. As in Fig. 7, but after 10 days of simulation.
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Fig. 9. As in Fig. 7, but after 30 days of simulation.
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dynamical adjustments, forecasts with data assimila-

tion, and quantitative data–model comparisons. Their

purpose was to improve the real-time simulations,

including the initialization procedures, the biogeo-

chemical model structures and parameters, and the

biogeochemical data assimilation.

4.2.1. Postcruise model calibration and initialization

The biogeochemical model structures, parameters,

and initial fields are now selected simultaneously.

This estimation can be computed automatically within

the framework of an inverse scheme (e.g., Matear,

1995; Spitz et al., 2001). However, an issue in the

current application of such schemes (Robinson and

Lermusiaux, 2002) is the possibly strong dependence

of the result on the a priori hypotheses (e.g., the first

guess used to start the iterations), the constraints

employed (weak vs. strong, many vs. few), and even

the scheme utilized to minimize the cost function

(Vallino, 2000). As a first step, the goal here is thus

to search for adequate a priori hypotheses. The auto-

mated inversion is not carried out. By successive

trials, hypotheses are modified and improved as a

function of data–model misfits.

The a priori constraints employed included di-

verse data bounds and approximate dominant (dy-

namical) balances in the biogeochemical model. The

latter were mainly used to determine a first guess at

the initial fields. For given constraints, the fit of

numerical simulations to data was measured, and the

model structures and parameters as well as the

constraints were then modified accordingly. In meas-

uring the skill of model simulations (e.g., Section

4.2.2), the relative data uncertainties were taken into

account. This procedure was repeated until the fit

was judged to be adequate. The objective of such a

research was to obtain a biogeochemical model with

constraints and initial conditions that were good

enough for assimilation studies. Even though many

iterations were carried out, for clarity, only a sum-

mary on the parameter bounds, model properties, and

initial fields obtained at the end of the iterations is

presented.

4.2.1.1. Parameter bounds. The synoptic data

bounds that were utilized for the model calibration

and initialization were based on the MBST-98 Chl,

NO3, NH4, T, and S data as well as other August–
October 1998 MWRA data (Section 3.2). The ampli-

tude of the photoinhibition process (h in Table 2,

Appendix A.2) was, for example, bounded based on

surface NH4 data and production-vs.-light MWRA

data. Values published in the literature (e.g., Libby

et al., 1999; Keller et al., 2001) and previous surveys

were also employed, as is described in Table 2 and

Section 4.1 for the real-time case. For example, the

sinking velocity for ‘‘detritus,’’ which is here an

aggregation of detritus, dissolved organic nitrogen,

and bacteria, was constrained by literature surveys

(Parsons et al., 1984; L.A. Anderson, personal com-

munication). Bounds for the photosynthetic parame-

ters (Table 2) were obtained from independent

analyses of the 1998 MWRA data (Keller et al.,

2001). Global properties were also utilized (e.g., the

averaged total nitrogen content is important for the

stability of the biogeochemical system).

4.2.1.2. Model formulations. Model structures (see

Appendix A), including boundary conditions, were

further optimized. For the physical model, open-

boundary conditions, atmospheric forcings, and some

numerical parameters were improved. For example, a

weekly relaxation of the Gulf of Maine buoyancy

forcings was combined with an Orlanski radiation

scheme at the northern and eastern boundaries; sur-

face heating computations and the time management

of the atmospheric forcings were improved; and

several wind-mixing coefficients were further cali-

brated. For the biogeochemical model, the structures

of the surface and bottom boundary condition models

were modified and the acclimation of Chl-a to light

was added (see Tables 1 and 2 in Appendix A.2 for

details). Special attention was paid to the daily light

regime model and cloud coverage data, and the sur-

face short-wave radiation forcing was improved. In

postcruise simulations, the corresponding intraday

time scales are taken into account. In particular,

biogeochemical fields are now output exactly at noon,

Boston time.

4.2.1.3. Model initialization and approximate dynam-

ical balance. The initialization of the postcruise

simulations is carried out in two phases, as in real-

time: first, a first guess is computed, and second, it is

dynamically adjusted. A time line of these initializa-

tion steps and subsequent data assimilations (Section
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4.2.3) is given on Fig. 10. For the physical fields, the

initialization procedure was similar to that carried out

in real time (Section 4.1.2). The first-guess physical

state is computed for August 17, using the OAs of the

initial T and S data, geostrophy, and an imposed

barotropic transport streamfunction along open boun-

daries. The positions of the MBST-98 and MWRA T

and S profiles, which are used in the mesoscale stage

of the initial OAs, are plotted on Fig. 11a and b. To

adjust velocities, the momentum equations are then

integrated for 4 days (Fig. 10), keeping T and S fixed.

To compute the first guess at the initial biogeo-

chemical fields, approximate dominant (dynamical)

balances in the biogeochemical equations (Table 1,

Eqs. (1)–(7)) were researched. The model equations

were nondimensionalized using an estimate of the

dominant physical and biogeochemical scales. Note

that these scales were computed from the hypothe-

sized parameter and state variable ranges. Following a

perturbation method, the biogeochemical variables

were then expanded into power series: zeroth-order

terms, first-order terms, etc. The zeroth-order terms

were then balanced against each other. Of course, this

zeroth-order balance depended on the parameter

bounds chosen, and vice versa.
Fig. 10. Time-line diagram for the biogeochemical–physical synoptic da

Adjustments are carried out offline. Final adjusted states are utilized to

forecasts in a data assimilation (the OI box contains dynamical adjustmen
Based on the extensive simulations that were

carried out, for the parameter bounds that led to

largest skill, it was found that at zeroth order, the

daily averaged effects of the fast intraday light time

scale are approximately balanced against the other

dominant but slower terms such that at the end of

the day, at zeroth order, biogeochemical variables

return to their values at the beginning of the day.

Without entering in the specifics (to be reported

elsewhere), for each equation and at each point in

space, the daily average of the production terms is

balanced against the other biogeochemical terms and

dominant physical terms, if they are judged to be of

the same order. For example, the zooplankton zer-

oth-order balance consists of a local grazing–mortal-

ity equilibrium while the detritus balance also

involves the vertical sinking and surface mixing

layer terms.

This new concept of circadian (daily) zeroth-order

biogeochemical balance (Fig. 10), when combined

with the data available for initialization, importantly

allows to compute a first guess at the initial values of

the non-observed state variables. To do so, the

observed fields are inserted in the circadian balance

and the balance is then (numerically) solved to esti-
ta, dynamical adjustments, and simulations with data assimilation.

initialize simulations (backward dashed arrows) and to correct the

ts).



Fig. 11. Positions of the synoptic data used in the initialization of the postcruise simulations.
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mate the unknowns, the non-observed fields. This

computation replaces Table 3 used in real time.

Presently, a first guess at the observed Chl, NO3,

and NH4 fields is obtained for August 20 by objective

analyses (Appendix A.4). The August 17–25 MBST-

98 and MWRA initialization data (station positions on

Fig. 11c–e) are used in both stages of the OA for

August 20 (central data date). For the Bay-scale OA,

some historical data (Appendix B) are also used. The

biogeochemical OA scales differ from those used in

real time (Section 4.2): 60 km zero crossing, 25 km e-

folding, and l time scale are used for the Bay scale;

20 km zero crossing, 6.5 km e-folding, and 7-day time

scale are used for the mesoscale. The biogeochemical

OA scales are as those of the physics because the

biogeochemical data are now synoptic and physical–

biogeochemical interactions lead to common scales.

Note that these objectively analyzed fields constrain

the approximate circadian local balance and the
parameters of the Chl, NO3, and NH4 equations

(Eqs. (4), (5), and (7) in Table 1, Appendix A.2):

the three of them must be compatible. The non-

observed P, Z, and D first-guess fields for August

20 are ultimately obtained by solving the remaining

equations in the circadian local balance (Fig. 10).

Cross-sections along Massachusetts Bay in these

first-guess Chl, Z, NO3, and NH4 fields are shown on

Fig. 12. Focusing on the objectively analyzed fields,

based on the August 17–25 data (Fig. 11c–e), the

Chl-a section (Fig. 12a) is relatively accurate at the

mesoscales, but the NO3 and NH4 sections (Fig. 12c

and d) are less accurate. This is because most of the

nutrient stations are located near Boston Harbor; there

are only a few profiles in Cape Cod Bay (on the left in

Fig. 12). In addition, the nutrient data are bottle data

which are of limited vertical resolution and are here

simply linearly interpolated in the vertical. The Z

section (Fig. 12b) results from the circadian local



Fig. 12. Postcruise biochemical field initialization: first guess at the initial fields. For each panel, the four cross-sections are along Massachusetts

Bay, from south to north.
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balance. It is in zeroth-order biogeochemical balance

with the P field.

With the above initialization scheme, for every set

of model structures and parameters, there is a set of

first-guess biogeochemical fields. The advantage is

that, up to data uncertainties, these initial fields are at

zeroth-order compatible with the model structures and

parameters, and with the data available. Therefore, the
duration of the costly second step of the initialization,

the dynamical adjustment (Fig. 10), was reduced. It

involved the time rate of change, diffusion, bio-sour-

ces/sinks, and light-forcing terms on August 20 (the

forcings were daily periodic). The results are illus-

trated on Fig. 13. Comparing Fig. 13 with Fig. 12, the

zeroth-order fields remain relatively unchanged; by

construction, only higher-order terms are adjusted. The



Fig. 13. Postcruise biochemical field initialization: dynamically adjusted initial fields. The cross-sections are as the first guess ones (same color

scaling as on Fig. 12), but after dynamical adjustment.
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largest changes are in the regions where data are too

scarce for the objective analyses (Fig. 11) (e.g., in

Cape Cod Bay, the NH4 first guess is adjusted to the

mesoscale resolution Chl and Z fields). Elsewhere,

adjustments mainly involve diffusion and biogeo-

chemical terms, which adapt the first-guess fields to

the topography and remove numerical interpolation
effects and objective analyses overshooting. The

limited amplitude of the dynamical adjustment is an

achievement. In the real-time procedure (Section

4.1.2), biogeochemical fields were drifting substan-

tially during this adjustment because the model param-

eters and nitrogen contents of the first-guess fields

were not compatible at zeroth order.
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4.2.1.4. Postcruise and real-time fields. It is in fact

only at the Bay scales that the 1998 initial conditions

(Fig. 13; see also Fig. 17 in Section 4.2.4) have some

similarities with the real-time initial fields (Fig. 7),

which are based on the 1995 data. Differences are

considerable in the smaller scales, for several reasons.

First, the mesoscale physical forcings were altered and

the data resolution and coverage are better in 1998

(Fig. 11) than in 1995 (Fig. 5). Second, the scales of

the real-time biogeochemical OAs (Table 4) were

enlarged to reflect the largest uncertainties due to

the use of historical data. In the postcruise simula-

tions, these scales were reduced, which explains why

the postcruise fields display pronounced (sub)meso-

scale variabilities as observed in the 1998 data. Third,

the first guess at the real-time initial fields (Fig. 6) was

unbalanced, which led to a model drift in the dynam-

ical adjustments.

Finally, differences are also due to interannual

variabilities. During the winter of 1998, the region

experienced exceptional weather events, which can be

attributed to the 1997 El Niño (Libby et al., 2000). As a

result, the winter water temperatures were warmer and

river outflows were higher. These conditions led to an

early onset of the stratification in the spring and to a

stronger summer stratification. Due to these extreme

conditions and related higher grazing pressures, a

classic winter–spring bloom was not really observed

in 1998 (Keller et al., 2001). Instead, the phytoplank-

ton abundance and chlorophyll a values observed by

the MWRA monotonically increased from winter to

fall. This continued production and strong stratifica-

tion resulted in accumulation of elevated organic and

inorganic nutrients below the pycnocline (Figs. 12 and

13) as compared to 1995 (Figs. 6 and 7).

4.2.1.5. Simulation time line and iterative calibration

based on forecast skill. Once fields and parameters

were initialized, the full physical model was inte-

grated from the August 17 initial conditions to August

20 (Fig. 10), hence building the internal response to

atmospheric forcings. The biogeochemical model was

then started, using the August 20 initial conditions,

and, from there on, the coupled physical–biogeo-

chemical model was run forward. At subsequent data

times (e.g., on September 2; Fig. 10), the skill of the

model was evaluated, before and after data assimila-

tion (Sections 4.2.2 and 4.2.3). If the skill was not
sufficient, a revised model calibration and initializa-

tion were carried out, and the whole process (Fig. 10)

was repeated.

4.2.2. Postcruise skill evaluation

The quality of a particular simulation was measured

quantitatively by comparing model fields to data

values at data points and to objectively analyzed data

fields. To do so, all synoptic data until the end of

September 1998 were employed. The update surveys

(September 2–4) played a special role since they

corresponded to the first new data collected after the

initialization surveys (Appendix B). Once the skill was

evaluated on a given day, the data collected on that day

were assimilated (Section 4.2.3) and the simulation

continued up to the next data time and skill evaluation.

The model parameters of the resulting best postcruise

simulation are listed in Table 2 (last column, Appendix

A.2). Most parameter values differ from the real-time

ones. For some parameters, relatively small differences

can have a significant impact on the model solution

(e.g., modify the averaged depth of the Chl-a max-

imum or the properties of surface nutrients). Such

parameters include the C:Chl ratio, the zooplankton

grazing and mortality parameters, and the phytoplank-

ton growth parameters (e.g., half-saturation constants

for nutrients uptakes). However, within our extensive

set of simulations, if parameter values differed by less

than 20% from the present best ones, the results

remained qualitatively identical. The final results are

therefore qualitatively robust. Qualitatively here

means that patches, blooms, and in general biogeo-

chemical gradients occur at similar times and places.

Quantitatively (i.e., based on strict comparisons of

model fields with data), the postcruise values listed

in Table 2 led to the best results. Note that since a

numerical inverse scheme was not utilized, a set of

parameters somewhat different from those in Table 2

could give even better quantitative results.

The skill evaluations are illustrated by Fig. 14, for

the case of the best postcruise simulation. The eco-

system forecast integrated from August 20 (using

analyzed atmospheric forcings if available; see

Appendix A.3) is compared to the data collected

during September 2–4. Fig. 15 shows the station

positions for these update surveys. Since Chl-a in

the biogeochemical field is the most densely observed

in the vertical and horizontal, it is chosen to illustrate



Fig. 14. Skill evaluation for the postcruise model structures and parameters. The skill metric shown is the sigma level by sigma level root mean

square of data forecast residuals (bias not shown). Top two panels (a–b): Pure forecast skill (no assimilation). Bottom two panels (c–d): Skill

after data assimilation. Fct = forecast.
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the model skill (nutrient data lead to similar results).

On Fig. 14, the top two panels illustrate the pure

forecast skill (no assimilation) and the bottom two

panels, the skill after data assimilation. The skill

measure shown is the root mean square (RMS) of

the differences between model fields and data values

at data points, averaged over each sigma level. The

mean of these differences, which up to data errors is

the bias of the model fields, was also computed. It led

to similar skill results. Considering first the pure

forecasts (Fig. 14a and b), a goal is to find out if

forecasts have better skill than the initial conditions

(i.e., Does the forecast ‘‘beat persistence’’?). Ideally,

this should be the case, especially in dynamically

active regions where model impacts should be sig-

nificant. Based on the Chl-a data collected on Sep-
tember 2 (Fig. 14a), the September 2 forecast is

largely superior to the persistence forecast (initial

conditions on August 20), on average by about

40%. The largest impact is around level 11. This is

because, on September 2, this level is near the

averaged depth of the Chl-a maxima in Cape Cod

Bay (see Chl-a data coverage on Fig. 15e), hence near

the depths of largest spatial variability. The September

2 forecast also improves the September 1 forecast

(Fig. 14a), on average by about 7%, which suggests

little phase error. Now comparing the model forecasts

to the September 3 Chl-a data (Fig. 14b), results are

similar. Briefly, the September 3 forecast is better than

persistence on average by 55% and the largest impacts

remain near the most dynamically active depths (i.e.,

the depth of the Chl-a maxima; on September 3, it was



Fig. 15. Positions of the data assimilated in the postcruise simulations during the September 2–4 update surveys.
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around level 8 in the center of the Bay, location of the

data; see Fig. 15e). The skill after data assimilation is

discussed next.

4.2.3. Postcruise physical and biogeochemical data

assimilation

Once sufficient iterations of the calibration, initial-

ization, and evaluation of skill for the September 2–4

forecasts were completed, different biogeochemical

data assimilation strategies based on the OI scheme

(Section 3.1) were compared. The best strategy was

determined by computing the forecast skill of the

different data-assimilative simulations for September

2–30. The time line (Fig. 10) only schematizes the

assimilation of the first new data, the September 2–4

update surveys (see Fig. 15), because it is the focus of

this subsection. Subsequently, for the September 17–

30 data (Appendix B), assimilation strategies remained

the same.
In the postcruise simulations, both physical and

biogeochemical data are assimilated. For the physical

OI, the T and S data available on a given day tk are

objectively analyzed using the same parameters as for

the initialization (Section 4.2.1), except the time

decay, which is reduced to 1 day. Internal velocities

in geostrophic equilibrium with these analyses are

then computed. These velocity and hydrographic

fields are ultimately blended (Appendix A.4) with

the forecast on days tk� 0.25, tk, and tk+ 0.25, with

relative data weights of 70%, 90%, and 60%, respec-

tively. This time ramping allows the dynamics to

adjust to the new local data.

The approach for the biogeochemical OI is as for

the physical OI. The parameters of the OA and blend-

ing steps are identical. Differences mainly arise

because the non-observed velocities are replaced by

the non-observed biogeochemical variables and

because geostrophy and momentum adjustments (Sec-
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tion 4.2.1) are replaced by circadian balance and

biogeochemical adjustments.

To study the impact of the circadian balance and

biogeochemical adjustments, a total of eight different

biogeochemical OI strategies was investigated. With-

out entering into details (to be reported elsewhere), the

simplest one consisted of assimilating the OAs of the

observed biogeochemical variables only, without any

adjustment and only at data times tk (no time ramping).

The most advanced one consisted of assimilating both

the observed and non-observed variables at every point

where a variable was observed and with the same time

ramping as for the physical OI. In this latter case, a first

guess at the non-observed variables (P, Z, D) is first

computed using the circadian local balance equations

(Section 4.2.1) and OAs of the observed variables at tk
(no historical data are used in these OAs for assim-

ilation). The resulting complete biogeochemical fields

are then dynamically adjusted, as in the initialization

(Fig. 10), except that the observed variables are here

reassimilated by OI during the adjustment. This is to

maintain the local nitrogen content of the observed

fields while high-order terms adjust in the non-

observed fields. It is these dynamically adjusted fields

(here seven fields) which are assimilated, with a non-

dimensional error field equal to the minimum of the

nondimensional observed error fields and with a time

ramping equal to the physical one. Measuring the

forecast skill by comparing model fields with data,

the latter strategy was overall the best one during the

September 2–30 period. Note that the same strategy,

but without the dynamical adjustment step, was as

good on average. This indicates that the local circadian

balance is adequate at zeroth order and efficient.

The OI skill was measured by comparing model

fields with the September 2–4 and September 17–30

data (Appendix B) at data points and with objective

analyses of these data. It is illustrated by the two

bottom panels of Fig. 14. The Chl-a skill is shown

because the September 2–3 Chl-a data cover about 3/

4 of the Bay while the nutrient data are only collected

near Boston Harbor, at a few bottle depths (Fig. 15c–

e). The assimilation on September 2 (Fig. 14c) logi-

cally reduces the averaged data residuals, at all depths.

On Fig. 14d, three model Chl-a fields are compared to

the September 3 data (Fig. 15e). First, for all three

curves, assimilating data on September 2 improved

the pure forecasts to September 3 (Fig. 14b) even
though the Chl-a data coverage on September 3 differ

from that on September 2. Comparing curves, the

September 3 forecast from the September 2 OI fields

(assimilates all September 2 but no September 3 data)

is better than the persisted OI field of September 2 in

the top eight levels but is worse below: on average,

they perform similarly. The OI on September 3 (third

curve on Fig. 14d) again logically reduces data–

model residuals. Interestingly, the a posteriori resid-

uals on September 3 are smaller than these on Sep-

tember 2 (Fig. 14c). The same remark applies to the

amplitude of the data corrections. In addition to a

possible convergence of the OI, this may suggest that

the simulation is better in the center of the Bay than in

Cape Cod Bay, reflecting the coverage of the initial

biogeochemical samplings (Fig. 11c–e).

4.2.4. Postcruise simulations: ecosystem evolution

and processes

For most of the simulation period, on days-to-

weeks average, the Bay-scale buoyancy circulation

was cyclonic. However, mesoscale and submesoscale

circulation features were highly variable during this

period. Atmospheric forcings also altered the Bay-

scale circulation. For example, in response to wind

events, the Cape Cod Bay circulation occasionally

changed from cyclonic to anticyclonic. A main focus

here is on the responses of the evolving biological

activity to such highly variable buoyancy-driven and

atmospheric-driven features.

During MBST-98, successive storm systems passed

over the Bay onAugust 24, August 29, September 5–6,

September 9–10, September 13, September 16, Sep-

tember 23, and September 28. On the event scales,

these quasi-weekly weather systems had considerable

impacts on the ecosystem variabilities of the Bay. For

conciseness, the model results illustrated here are

chosen according to three of these storm events

(August 29, September 5–6, and September 23). Of

course, to discuss important characteristics of the over-

all ecosystem evolution, several features that occurred

before or after these events are also described.

On Fig. 16, the chlorophyll a and velocity fields

at 20 m are illustrated on four snapshots, in each

case at noon local time: on August 20 for the initial

values and on August 29, September 7, and Sep-

tember 24 for the three selected storm events. On

August 20 (Fig. 16a), all biogeochemical fields dis-



Fig. 16. Horizontal distributions of velocities overlaid on chlorophyll a (mg m� 3 Chl) at 20 m and at noon time, on August 20 (initialization),

August 29, September 7, and September 24, as estimated by the best postcruise simulation. Note that the color scale used in August differs for

that used in September.
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play maximum values west of Race Point. This is

due to the advection of nutrient-rich bottom waters

upwelled into the euphotic zone from the shallows

of Cape Cod Bay (e.g., Billingsgate Shoal). Such

Chl-a values were near the maximum ones measured

during the summer–autumn of 1998 across the basin

(Libby et al., 1999). The upwelling and mixing were
influenced by the northeasterly winds that occurred

before and during the initial sampling (Appendix B),

but also reflect the local prevailing buoyancy circu-

lation in this period. High Chl-a values also occur

north of Race Point, on the shallow Stellwagen

Bank, especially on its southwestern flank. This is

in part due to topographic upwelling, both wind-
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driven and buoyancy-driven by branches of the

Maine coastal current meandering around and above

the bank. On August 29 (Fig. 16b), elevated Chl-a

values offshore between Boston and Plymouth are

interestingly due to a downwelling event driven by

the strong northwesterly winds of August 29. In

accord with the physical findings of Lermusiaux

(2001), by Ekman transport, nutrient-rich bottom

waters at the coast are advected offshore and, by

turbulent wind mixing and vertical advections, they

lead to offshore production in the euphotic zone.

This bloom lasted for 3 days. Chlorophyll a, phyto-

plankton, and productivity measurements confirm

that a bloom occurred in this area (Libby et al.,

2000). On September 7 (Fig. 16c), after 2 days of

medium-to-strong northerly winds, Chl-a values at

20 m were varying between 2 and 3 mg m� 3 Chl,

which is lower than on earlier days. This is actually

due to a deepening and vertical mixing of the Chl-a

maximum. The 20-m Chl a values on the southern

flank of Stellwagen Bank have been substantially

reduced. The largest Chl-a at 20 m is now at the

bottom, along the coastline. The strongest storm

occurred on September 23 and the circulation

responded quickly. By September 24 (Fig. 16d), the

strong winds from the north had increased the depth of

the surface mixed layer to 10–15 m and had eroded the

thermocline, which, by then, extended from 10 to 50

m. In Cape Cod Bay, the local buoyancy circulation

had become mostly cyclonic (Fig. 16d), which allowed

to maintain a low Chl-a maximum near the center of

the Bay at 20 m.

Figs. 17–20 show vertical cross-sections in the

temperature, zonal velocity, nitrate, ammonium, chlor-

ophyll a, zooplankton, detritus, and nitrate production

rate fields, from south to north along Massachusetts

Bay and at the same dates as on Fig. 16.

The model initialization data (Fig. 17) show that

stratified waters in Massachusetts Bay are character-

ized by a subsurface layer of Chl-a maxima. The

distributions of nitrate, ammonium, detritus, and zoo-

plankton follow this structure, which is typical of

summer conditions. Nutrient concentrations are gen-

erally low in the surface waters and increase near the

pycnocline. The degradation of organic matter, remi-

neralization, and nitrification contribute to the nitrate

increase in bottom waters. The Chl-a maxima are

around 10–25 m in depth and vary between 3 and 6
Ag CH l� 1 in magnitude (Fig. 17e). High Chl-a values

are in the southern part of the basin where a bloom

occurs (Fig. 16a). Although there is a continuous

utilization of nutrients by phytoplankton, NO3 con-

centrations are relatively high (f 2–7 Amol N l� 1) at

the depths of the Chl-a maxima. This NO3, together

with the locally high values of the regenerated NH4, is

able to maintain the bloom for the first 10 days of the

simulation. All of these local features are mainly the

result of a sustained advection from the shallow and

nutrient-rich Cape Cod Bay. By day 10 (Fig. 16b), the

bloom is dispersed and partly transported outside of

the Bay. The local uptake of nitrate by phytoplankton

(nitrate production rate) is shown on Fig. 17h. As a

proxy for new production (Lalli and Parsons, 1997), it

indicates that the new production is deeper in the

northern half of Bay than in the southern half. This is

in a large part due to the spatial variability of the

euphotic zone in the Bay. This variability itself mainly

results from the spatial variability of the incident

radiation and light attenuation by the Chl-a field

(Appendices B.2 and B.3). As is characteristic of late

summer conditions, the new production is low and

does not follow the detailed structure of Chl-a. The

phytoplankton biomass is indeed sustained by the

ammonium production rate (not shown), i.e., a proxi

for regenerated production.

On August 29 (Fig. 18), the high Chl-a observed at

initialization still exists in Cape Cod Bay. The nitrate

production rate (Fig. 18h) is still higher in this area

than in other regions (note that the high rate is

localized near the sea floor as shown in the cross-

section, but it actually occurs all around Cape Cod

Bay). Detritus, nitrate, and ammonium concentrations

below the high Chl-a have increased since August 20

(Fig. 17). This is due to the sinking of higher detritus

concentrations produced by the high biological activ-

ity in this area, and to nutrient regeneration and

remineralization processes at depth. Comparing Fig.

17f with Fig. 18f, the zooplankton biomass remains

relatively unchanged, but the spatial distribution is

modified due to advection and mixing.

Towards autumn (Fig. 19), the mixed layer gradu-

ally deepens and upper layers are becoming cooler

due to stronger episodic winds and lower heat input.

A few storms forced relatively deep mixing and

induced eddies in the Bay. The anticyclonic eddy in

the north (Fig. 19a and b) lowers the thermocline and



Fig. 17. Vertical cross-sections from south to north along Massachusetts Bay on August 20, as used to initialize the best postcruise data-driven

simulation: (a) temperature (jC); (b) zonal velocity (cm s� 1); (c) nitrate (Amol l� 1 N); (d) ammonium (Amol l� 1 N); (e) chlorophyll a (mg m� 3

Chl); (f) zooplankton (Amol l� 1 N); (g) detritus (Amol l� 1 N); and (h) nitrate production rate (Amol day� 1 N), which is a proxy for new production.
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Fig. 18. As in Fig. 17, but for 29 August (day 9).
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Fig. 19. As in Fig. 17, but for September 7.
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Fig. 20. As in Fig. 17, but for September 24.
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pumps biogeochemical material out of the euphotic

zone in its center. However, along its boundary,

upwelling occurs (Lermusiaux, 2001), which brings

nutrients in the euphotic zone and leads to small local

blooms. In particular, such blooms are observed in the

surface mixed layer and within a thin layer along the

bottom at the northern coastline. The nitrate produc-

tion rate displays maxima in this area (see dark red

spots on Fig. 19h). The scales of the patches in this

proxy for new production are smaller than the scales

of the Chl-a patches. This is because primary produc-

tion is mainly maintained by ammonium and the

corresponding regenerated production. After the

depletion of nutrients imported in the euphotic zone,

the standing stock of phytoplankton is sustained for a

couple of days with the utilization of the ammonium

from remineralization and fractions of zooplankton

mortality and excretion and also eddy diffusion of

nutrients at the base of thermocline. Detritus sinks

below the thermocline, where its remineralization

generates ammonium peaks.

From August through September (Figs. 17–20), a

gradual increase of nitrate, ammonium, and detritus

below the pycnocline is observed in the simulations.

This occurs even though there is a continued supply of

nutrients to the euphotic zone during this period. From

August 20 (Fig. 17a) to September 24 (Fig. 20a), the

upper thermocline deepened approximately 10 m and

the thermocline extension eroded down to 50 m. This

deepening is not sufficient to overturn the water

column and so enter winter conditions. Due to the

maintained stratified conditions, detritus and nutrient

concentrations on September 24 (Fig. 20) are likely

reaching their maximum values below the pycnocline.

The nitrate concentrations on September 24 (Fig.

20c) are still low in the surface mixed layer but are

much higher than in August. They reach 2–3.5 Amol

l� 1 N in Cape Cod Bay (south). The nutricline

deepened following the deepening of the mixed layer.

The ammonium and detritus patterns in the deeper

layers are similar to those of nitrate. However, the

ammonium is now relatively depleted at the surface

because of nitrification and because the phytoplankton

preferentially takes up ammonia over nitrate (Appen-

dix A.2). The Chl-a maximum (Fig. 20e) also moved

down to about 30 m and is inclined from north to

south. A similar tendency was observed in the real-

time simulations (e.g., Fig. 9). The Chl-a maximum is
now broader than in August. The surface Chl-a values

have increased a bit to about 1–1.5 mg Chl m� 3. This

is likely the surface signal of the start of the autumn

bloom. Overall, the zooplankton patterns follow the

Chl-a patterns. Differences in patterns are largest at

the surface and at depth. This is in part due to the

saturation of the zooplankton grazing and Ivlev con-

stant (Section 3.2). Compared to other biogeochem-

ical variables, the zooplankton biomass varied the

least on average during the August–October period.

However, the zooplankton variations are important

since zooplankton mortality and grazing mediate the

phytoplankton growth in the present regenerated pro-

duction cycle. In particular, note that during the 47

days of simulation, the zooplankton patches deep-

ened, their scales became larger, and their maximum

values decreased from about 2 Amol N l� 1 (Fig. 17f)

to 1.3 Amol N l� 1.

An example of eddy-induced biological production

is observed on September 24 and corresponds to an

upper layer cyclone in southern Cape Cod Bay. The

vertical distributions of temperature and zonal veloc-

ities show the vertical extent of the eddy in this

southern region (Fig. 20a and b). The wind-induced

eddy is mostly confined to the upper 20 m of the water

column and is able to entrain waters from 20 to 25 m

to the upper layers. Nutrients and detritus are raised

from deep layers, and the regenerated production (not

shown) and to a lesser extent the new production (Fig.

20h) are then enhanced in this area, especially along

the high-shear edges of the eddy where vertical cells

occur (Lermusiaux, 2001). In situ observations show

that the autumn bloom started by the end of Septem-

ber. From our postcruise simulations, it can be

hypothesized that the autumn bloom in 1998 was

likely initiated by the successive storms of September,

in particular the very strong one on September 23, and

by the corresponding deepening of the mixed-layer

and subsequent eddy-induced mixing.
5. Summary and conclusions

Real-time and postcruise data-assimilative numer-

ical simulations were carried out and evaluated for the

Massachusetts Bay marine ecosystem during August–

October 1998 using physical, chemical, and biological

data and coupled four-dimensional (4D) physical–
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biogeochemical models. The biogeochemical model

was in part developed for this study. Other technical

advances included methods for the initialization and

calibration of the structures and parameters of the

biogeochemical model, and for the assimilation via

optimal interpolation of dynamically adjusted fields.

All of these techniques should be useful in other

midlatitude coastal ecosystems.

During the real-time forecasting, the physical

model was initialized with hydrographic data from

the August 1998 surveys and the biogeochemical

model with historical data. This was carried out based

on simple linear relations between observed and non-

observed state variables, with subsequent dynamical

adjustments. Initial physical–biogeochemical compat-

ibility was achieved offline of the main forecast:

velocities were adjusted for 5 days and biogeochem-

ical fields for 10 days with frozen physics but no

advection. During the ecosystem simulation, the

coupled models were forced with real-time atmos-

pheric fluxes. Physical data collected during the

experiment were assimilated, but biogeochemical data

were not.

The skill of the physical model was found to

depend on the strength and accuracy of the atmos-

pheric forecasts. For strong winds, the model skill was

usually limited to about 2 days mainly because of

atmospheric forcing uncertainties. For weak winds,

the physical predictive capability was extended to

about 1 week. For the ecosystem simulations, robust,

reasonable fields were achieved in real time, with a

full set of parameters estimated from historical and

real-time data. After about 1 week, biogeochemical

fields appeared to be evolving in coupled dynamical

equilibrium. They exhibited qualitative forecast skill

only at the Bay scales, but included (sub)mesoscale

features generated within the model. This skill at the

Bay scales in part resulted from the forcing by the

real-time 4-D physical forecasts with physical data

assimilation, which created and maintained spatial and

temporal scales.

After the calibration and analysis of the 1998

biogeochemical data, an extensive number of post-

cruise data-driven simulations (hindcasts) were car-

ried out and studied. These simulations assimilated

both physical and biogeochemical data. Based on

sensitivity studies and data–model misfits, the param-

eterizations of several biogeochemical and optical
processes, the boundary condition formulations, and

the initialization and assimilation procedures were

improved. The final initialization procedure included

bounded parameter ranges and dominant dynamical

balances. Starting from the observed biogeochemical

state variables (Chl, NO3, NH4), which are in dynam-

ical equilibrium with the physics, the initial conditions

for the non-observed variables (P, Z, D) are obtained

by imposing a constraint of zeroth-order dynamical

periodicity over a daily cycle. Full compatibility of the

physics and biology is then easily achieved through a

short 4-D dynamical integration with frozen physical

fields. This procedure, based on dominant biogeo-

chemical balance, is also used to update the non-

observed variables at data assimilation steps. The skill

of the coupled models was evaluated before and after

data assimilation, showing substantial improvement

over the real-time case, on all scales. For good enough

initial data and atmospheric analyses, the predictive

capability of the internal ecosystem remained signifi-

cant after a couple of weeks.

Overall, the ecosystem of the Bay, including the

transition from summer to fall conditions, was found

to depend crucially on the successive atmospheric

events, (sub)mesoscale buoyancy features, and inter-

actions of these two highly variable physical forcings.

Storm systems passed over the Bay quasi-weekly and,

in response to their variable winds, coastal upwelling

blooms occurred at various locations around the Bay.

The storms altered the Bay-scale circulation and

induced mesoscale variability, often modifying exist-

ing eddies or creating new ones. The rapid (sub)me-

soscale physical injections of nutrients into the

euphotic zone were found to produce subsurface

phytoplankton patches on the physical (sub)meso-

scales. Mesoscale eddies, jets, and meanders were

able to maintain above-average (anticyclonic) or

below-average (cyclonic) biological activity on the

mesoscales, but regardless of the direction of curva-

ture, higher production, supported mainly by subme-

soscale vertical cells, always occurred along high-

shear edges of these eddies, jets, and meanders.

In late August and early September, all biogeo-

chemical fields displayed maximum values west of

Race Point because of advection of nutrient-rich

bottom waters upwelled into the euphotic zone from

the shallows of Cape Cod Bay. High biogeochemical

activity also occurred on the southwestern flank of
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Stellwagen Bank in part due to topographic upwell-

ing, both wind-driven and buoyancy-driven by

branches of the Maine coastal current meandering

around and above the bank. A few downwelling

events driven by strong northwesterly winds also

occurred. These events advect the coastal, nutrient-

rich, bottom waters offshore and, by wind mixing and

vertical advections, can lead to offshore biological

production.

During September, wind events strengthened and

became more frequent, which deepened the mixed

layer, and eroded the stratification, which led to

deeper mixing of biogeochemical fields and the onset

of autumn blooms. These blooms start on both nitrate

and ammonium, but are usually maintained by regen-

erated production for several days to about a week. As

the mixed layer deepens, the depths of the subsurface

phytoplankton maxima increase while the biomass

itself decreases. At the same time, the detritus and

nutrient concentrations increase below these maxima

and below the pycnocline.
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Appendix A. Coupled models and data

assimilation scheme

A.1. Physical model

The physical dynamical model employed here is the

4-D primitive equation model of HOPS, which is

based on the GFDL integration algorithm (Robinson,

1996; Spall and Robinson, 1990). The model grid

covers the area shown in Fig. 4 at a resolution of

1.668 km with 16 terrains—following levels in the

vertical. Horizontal subgridscale processes are para-

meterized using Shapiro filters, which are applied on

the submesoscale components of the total PE fields

(Lermusiaux, 1997). The filter is scale-sensitive and,

after calibration of its parameters, can remove numer-

ical noise while keeping dynamical scales mostly

unchanged. The bulk vertical diffusion is parameter-

ized based on the local Richardson number. The trans-

fer of atmospheric fluxes (see Appendix A.3) to the

water column involves a vertical mixing–length tur-

bulent model based on a locally computed ‘‘Ekman

depth’’ (L.A. Anderson and C.J. Lozano, personal

communication). A bottom boundary layer and coastal

friction parameterizations are also incorporated (Ler-

musiaux, 1997). At open boundaries, conditions based

on an Orlanski radiation scheme (Orlanski, 1976) and

on a weekly relaxation of the Gulf of Maine buoyancy

forcings are employed. Across coastlines, the normal

flow and tracer fluxes are set to zero. Details on the

physical model and on its calibration for the mesoscale

dynamics of Massachusetts Bay are given in Lermu-

siaux (2001) and references therein.

A.2. Biogeochemical model

The biogeochemical model coupled to the physical

model includes phytoplankton P, zooplankton Z,

detritus D, nitrate NO3, ammonium NH4, and chlor-

ophyll a Chl-a. The core of this new model was

mainly developed by J.A. Dusenberry (personal com-

munication), based on previous HOPS models. P.F.J.

Lermusiaux later modified and improved several

portions of the model. The resulting biogeochemical

model and its rationale are now described.

In comparison with previous synoptic data sets, the

MBST-98 interdisciplinary data are unprecedented in

synoptic coverage and breadth of type (K. Sherman,



Table 1

HOPS biogeochemical model equations for Massachusetts Bay

Generic ADR equation:

B/i

Bt
þu �j/i�jhðAij/iÞ�

BKiB/i=Bz

Bz
¼ Bið/1; . . . ;/i; . . . ;/7Þ ð1� 7Þ

Phytoplankton dynamics ( PWPNO3
+PNH4

):

BP ¼ VNO3 þ VNH4 � gZ � n3P � n4P
2 � vP

dP

dz
ð1� 2Þ

where:

VNH4 ¼ PP

hCChl

NH4

kNH4
þ NH4

P; VNO3 ¼ PP

hCChl

NO3e
�wNH4

kNO3
þ NO3

P; PP ¼ Pmð1� e�aE=Pm Þe�bE=Pm

Zooplankton dynamics:

BZ ¼ ð1� c1 � c2ÞgZ � n1Z � n2Z
2; where g ¼ Rmð1� e�KPÞ ð3Þ

Nitrate dynamics:

BNO3
¼ �VNO3 þ kNNH4 ð4Þ

Ammonium dynamics:

BNH4
¼ �VNH4 � kNNH4 þ c1gZ þ ð1� e1Þn1Z þ ð1� e2Þn2Z2 þ kDD ð5Þ

Detritus dynamics:

BD ¼ �kDDþ c2gZ þ e1n1Z þ e2n2Z
2 þ n3P þ n4P

2 � vD
dD

dz
ð6Þ

Chlorophyll a dynamics (ChlWhN
ChlP):

dChl

dt
¼ hChlN

dP

dt
þ P

dhChlN

dt
¼ hChldt

dP

dt
þ cChl 1� hChlN

hChlNl

 !
ð7Þ

where:

dhChlN =dt ¼ chChlN ð1� hChlN =hChlNl
Þ is used with hChlNl

¼ 1=ðhNChll ð0Þ þ dl Eðx; y; z; tÞÞ

Optical model:

Eðx; y; z; tÞ ¼ Eðx; y; 0; tÞe
�kwzþkc

Z z

0

Chldz

Bottom boundary conditions:

jv

dP

dz
¼ f rPvPP; jv

dChl

dz
¼ f rPvPChl; jv

dD

dz
¼ f rPvDD; jv

dZ

dz
¼ 0;

jv

dNH4

dz
¼ �f rfNH4

ðf rDvDDþ f rPvPPÞ; jv

dNO3

dz
¼ �f rð1� fNH4

Þðf rDvDDþ f rPvPPÞ
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Table 2

Model parameters: real time, real-time alternate (from literature), and postcruise values

Parameter Symbol Units Real time

value

Alternate

value

Postcruise

value

Phytoplankton light attenuation scale kc m2 (mg Chl)� 1 0.0480 0.02–0.07a,b 0.031

PAR over total surface irradiance – – 0.45e 0.45

H2O light attenuation scale k m� 1 0.04 0.04

‘‘Maximum’’ photosynthesis rate Pm mg C (mg Chl)� 1 s� 1 2.8e� 3e 4.0e� 4 9.26e� 4d

Initial slope of P/I curve a mg C (mg Chl)� 1 s� 1/

(Amol photons m� 2 s� 1)

1.6e� 5e 3.19e� 5 1.5e� 5d

Photoinhibition parameter b mg C (mg Chl)� 1 s� 1/

(Amol photons m� 2 s� 1)

0.0 0.12e� 5

Half-saturation for NO3 uptake kNO3
Amol l� 1 N 0.5 0.1–10.3a 0.7

Half-saturation for NH4 uptake kNH4
Amol l� 1 N 0.2 0.1–5.7a 0.6

NH4
+ inhibition parameter w (Amol l� 1 N)� 1 3.5 1.5–3.5a 5.5

Linear phytoplankton mortality rate n3 day� 1 0.05 0.045–0.11a 0.032

Quadratic phytoplankton mortality rate n4 day� 1 (Amol l� 1 N)� 1 0.0 0

Maximum zooplanktongrazing rate Rm day� 1 0.5 0.1–2.5c 0.47

Ivlev constant K (Amol l� 1 N)� 1 0.75 0.24

Percent of zooplanktongrazing excr. as NH4
+ c1 0.16 0.75 0.27

Percent of zooplanktongrazing excr. as detritus c2 0.04 0.16

Linear z grazing loss rate n1 day� 1 0.05 0.029

Quadratic z grazing loss rate n2 day� 1 (Amol l� 1 N)� 1 0.1 0.096

Percent of linear z grazing loss to detritus e1 0.3 0.33 0.3

Percent of quadratic z grazing loss to detritus e2 0.2 0.2

Phytoplankton settling velocity vP m day� 1 0.0 0.3

Detritus sinking velocity vD m day� 1 1.0 10.0 3.0

Deposited fraction of settling phytoplankton f P
r 1.0 0.6

Deposited fraction of sinking detritus fD
r 1.0 0.6

Buried fraction of total remineralization 1� f r 0.0 0.0

Fraction of sediment flux that is NH4 fNH4
0.0 0.65

Nitrification time scale kN day� 1 0.15 0.06

Detritus remineralization time scale kD day� 1 0.1 0.19

N:C ratio of phytoplankton hC
N Amol N (Amol C)� 1 0.15e 0.15

C:Chl ratio hCChlW 12

hChlN hNC

� �
hChl
C mg C (mg Chl)� 1 40e 10–160e dynamic

(100–120)

Photoacclimation linear time scale c day� 1 0.0 1/6

( P:Chl)l ratio at E = 0 hChll
N (0) mol N (g Chl)� 1 – 100� hC

N/12 = 1.25

Slope of ( P:Chl)l dl (mol N (g Chl)� 1)/

(Amol photons m� 2 s� 1)

– 1.2078e� 4

a Fasham et al. (1990).
b Wroblewski (1977).
c Based on MWRA data collected in 1995.
d Parsons et al. (1984) and Keller et al. (2001).
e Kremer and Nixon (1978) and Hofmann and Ambler (1988).
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N.M.F.S., personal communication). However, the

biogeochemical data remain relatively limited, which

constrains the number of state variables that can be

included in the biogeochemical model. The explicit

modeling of chlorophyll a is nonetheless important as

it allows the relatively direct use of satellite images

(sea surface color) and in situ fluorometer profiles for

model validation and data assimilation. It also allows
the parameterization of photoacclimation in terms of a

light-dependent carbon-to-chlorophyll a ratio. The

model equations and conceptual design of the food

web are given in Table 1 and Fig. 3, respectively. In

the model, fluxes and state variables are expressed in

terms of nitrogen (e.g., state variables are in Amol N

l� 1; except chlorophyll a, which is in mg Chl m� 3).

For all biogeochemical state variables /i, a four-
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dimensional advection–diffusion-reaction (ADR)

equation is employed (Table 1). Presently, the /i

values are: [PNO3
, PNH4

, NO3, Z, NH4, D, Chl]. The

model structures (i.e., the biogeochemical dynamics

or reaction term Bi for each /i) are defined in Table 1

and described below. The model parameters and their

values in the real-time and postcruise simulations are

listed in Table 2 (units of nondimensional parameters

are left blank).

A.2.1 . Biogeochemical model equations

Although fluxes are total biomass, phytoplankton

is divided into two state variables in the model

implementation: one PNO3
corresponds to new pro-

duction, or cellular nitrogen resulting from NO3

uptake, and the other PNH4
to regenerated production,

or cellular nitrogen resulting from NH4 uptake. This

division allows a tracking of new and regenerated

primary productions and is mainly implemented for

the purpose of understanding. Note that it leads to a

biogeochemical model with seven instead of six state

variables. The variability of the phytoplankton bio-

mass (Eqs. (1) and (2)) is governed by primary

production and losses due to grazing and mortality.

Phytoplankton growth is controlled by light and

nutrient limitation terms. Uptake rates of dissolved

inorganic nutrients (VNO3/P and VNH4/P) involve the

light-limited growth rate and Michaelis–Menten

kinetics for nutrient uptake as proposed by Wroblew-

ski (1977). Light-limited growth is implemented fol-

lowing a three-parameter exponential model (Platt et

al., 1980), taking into account the self-shading by Chl-

a in addition to the water attenuation. The loss of

nitrogen from the phytoplankton biomass is repre-

sented in the form of linear and quadratic loss rates.

The use of a quadratic term can account for higher

loss when the phytoplankton concentration is high.

The loss of phytoplankton due to settling is imple-

mented as an advection term: it is proportional to the

vertical gradient of phytoplankton concentration with

a constant settling velocity here.

The modeled zooplankton (Eq. (3)) grazes on

phytoplankton only and this is governed by the Ivlev

grazing function (Ivlev, 1955). Zooplankton grazing

of detritus is not included. The zooplankton mortality

is implemented as linear and quadratic loss rates. A

quadratic mortality term mainly accounts for higher

predators that are not explicitly modeled in the present
formulation. The detritus pool in the model (Eq. (6)) is

formed from phytoplankton mortality and from frac-

tions of zooplankton mortality and excretion (eges-

tion). Detritus is subject to sinking and, as for the

phytoplankton, this is represented as being propor-

tional to the vertical gradient of its concentration.

Detritus is directly remineralized to ammonium with-

out explicitly modeling the microbial loop or food

web (Azam et al., 1983; Ducklow, 1983; Sherr and

Sherr, 1988). Detritus should thus be understood as an

aggregation of detritus, dissolved organic nitrogen,

and bacteria, which has implications on the values of

model parameters (Section 4.2.1). Ammonium (Eq.

(5)) is generated by remineralization and fractions of

zooplankton mortality and excretion. Ammonium los-

ses are due to phytoplankton uptake and a conversion

to nitrate using a nitrification time scale. The nitrate

equation (Eq. (4)) involves the new production and

nitrification terms. The chlorophyll a concentration

(Eq. (7)) is assumed to be proportional to phytoplank-

ton biomass in nitrogen units (i.e., ChlWhN
ChlP), but

the chlorophyll a-to-nitrogen ratio of phytoplankton

(hN
Chl) is allowed to vary owing to photoacclimation.

The first term in Eq. (7) is simply computed from the

phytoplankton equation. The second term parameter-

izes the hysteresis in photoacclimation dynamics

(Cullen and Lewis, 1988; Dusenberry, 2000). It mod-

els the delayed tendency of phytoplankton to accli-

mate to a fully adapted ratio, hNl
Chl . This fully adapted

ratio is here assumed to be the inverse of a linear

function of the local light intensity E(x,y,z,t). The

parameters of this function (P:Chl)l are the intersect

at zero light hChll
N (0) and the slope dl [they

correspond to 100 (120) mg C (mg Chl)� 1 at 0

(1000) W m� 2; see Table 2].

A.2.2 . Biogeochemical model parameters

The estimation of biogeochemical model parame-

ters is challenging, mainly because of the lack of

sufficient data, model nonlinearities, and imperfect

model structures (e.g., Robinson and Lermusiaux,

2002). For this study, parameters were estimated from

a combination of in situ data, literature surveys, and

approximate dynamical constraints. In Table 2, the

real-time column corresponds to the values employed

in forecasts (Section 4.1). The alternate values were

also utilized in real-time: they are parameter bounds

obtained from the literature and from MWRA data
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collected in 1995. After the cruise, a much wider

range of values (not reported here) was investigated

for all parameters. These postcruise sensitivity studies

involved a total of more than 500 different numerical

simulations (Section 4.2). The present optimal set of

postcruise parameters is listed in the last column of

Table 2. Note that based on data–model misfits,

several portions of the biogeochemical model were

improved or added during the postcruise analysis

(e.g., initialization, photoacclimation, surface and

bottom boundary conditions, etc.).

A.3. Vertical boundary conditions: atmospheric and

sediment fluxes

The physical PE model is forced with surface

atmospheric fields [wind stress, fresh water flux (E–

P), and net heat flux] computed from the US Navy

Fleet Numerical Meteorologic and Oceanographic

Center (FNMOC) daily meteorological fields. These

fluxes are interpolated in time and then applied as

boundary conditions on the surface model level. For

the biogeochemical model, short-wave radiation is

calculated from the FNMOC daily cloud cover fields.

To compute the photosynthetically available radiation

(PAR) in the production terms of the P and Chl

equations, the daily short-wave radiation is interpo-

lated to hourly values assuming a half-sine curve

between sunrise and sunset, giving a maximum at

midday. This fast-varying short-wave radiation field is

applied at the surface, and the available irradiance in

the water column, E(x,y,z,t) (Tables 1 and 2), is

computed using an exponential decay optical model.

For each real-time forecast simulations, the atmos-

pheric forcings were analyzed in atmospheric fields

for all days prior to the start of the forecast and

forecast atmospheric fields for all days thereafter.

Presently, the last analysis is on September 23. For

the postcruise simulations, all atmospheric fields are

analysed, if available (they are forecast if not).

At the bottom, a dynamic stress balance involving

a drag coefficient is applied to the momentum equa-

tions and a Rayleigh friction parameterizes a simple

physical boundary layer (Lermusiaux, 1997). Salinity

and temperature fluxes are set to zero. For each

biogeochemical state variable, the vertical eddy flux

at the bottom is set to be balanced with the flux from/

to the sediments (Tables 1 and 2). The zooplankton
flux is set to zero. As the settling phytoplankton (vP)

and sinking detritus (vD) reach the bottom, a portion

of it remains at the ocean bottom (1� f P
r , 1� fD

r) while

the remainder is deposited in the sediments ( f P
r , fD

r). In

these sediments, remineralization occurs and a flux of

nutrients (ammonium and nitrate) is released from the

sediments to the water column. This upward flux of

nutrients can be smaller than the downward flux of

material due to burial (1� f r). In our model, we

assume a local instantaneous equilibrium between

the upward nutrient flux (nutrients not buried) and

the portions of the downward phytoplankton and

detritus fluxes that are deposited but not buried in

the sediments. Specifically (Table 2), f P
r ( fD

r) is the

fraction of phytoplankton (detritus) sinking at the

bottom that is deposited in the sediments [the rest

remain as phytoplankton (detritus) at the bottom], f r is

the fraction of total nitrogen entering the sediments

that is not buried but remineralizes at the bottom level,

and fNH4
is the fraction of the total dissolved inorganic

nitrogen flux from sediments (i.e., ammonium; the

nitrate fraction is 1� fNH4
). The values of fNH4

in

coastal regions and in the open ocean differ: in coastal

regions, the ammonium flux is usually larger than the

nitrate flux ( fNH4
>0.5, as estimated in Section 4.2).

A.4. Data assimilation scheme

The optimal interpolation scheme of HOPS is

employed. Its data forecast melding consists of a

two-scale objective analysis of the observations, fol-

lowed by a blending of the forecast with the OA

fields, in accord with the errors of the objectively

analyzed data (Robinson, 1996; Lozano et al., 1996;

Lermusiaux, 1999).

The OA scheme, which is also employed in the

initialization of model fields, is based on the Gauss–

Markov or minimum error variance criterion (e.g.,

Carter and Robinson, 1987). The mapping of obser-

vations is carried out by successive corrections on

horizontal grids and, presently, it is a two-scale OA.

A field w is estimated by ŵ(r) = w̄(r) +wV(r), where
r=(x,y). The first OA is used to estimate the (spatially

variable) mean or largest dynamical scales consid-

ered, w̄ (e.g., the large-scale field). The second OA

determines the main scales of interest, wV (e.g., the

mesoscale). In the first stage, the large-scale depar-

ture wL(r) from a horizontally uniform field wU is
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estimated, which leads to an estimate of the mean

field w̄ (r) =wU +wL(r). In the second stage, the

mesoscale departure wV(r) from this mean field

w̄(r) is estimated. Most of the time, in the first stage,

both historical and synoptic data are utilized, while in

the second stage, only synoptic data are employed.

This process is repeated for several depths. The form

of the correlation function in the two stages of the

OA is identical, but its parameters are not. The

scalable correlation C between two variations at the

points r1, r2 occurring at the times t1, t2, respectively,

is modeled by:

Cðr1; r2Þ ¼ 1� s2

D2
0

� �
exp � s2

2D2
S

� ðt1 � t2Þ2

2s2

" #
;

where s2=(r1� r2)
T(r1� r2) with superscript T denot-

ing the transpose of a vector; s and DS are the time

and space decorrelation scales, respectively; and D0

is the spatial zero crossing of the correlation function

C. Once the observations are mapped into 3-D fields,

they are linearly combined (blended) with the corre-

sponding forecast fields, in accord with the a poste-

riori error variance field of the objectively analyzed

data.
Appendix B. Historical and synoptic data sets and

their utilization

The data used in this study are divided into: (i)

historical data used for model preparation and cali-

bration, (ii) data used for initialization of the real-time

simulations, and (iii) data collected during August–

September 1998 (MBST-98 period).

B.1. Data for model calibration

The tuning of the dynamical and numerical param-

eters of the physical model started more than a year

prior to MBST-98 (P.J. Haley, personal communica-

tion; Lermusiaux, 2001) and involved Observation

System Simulation Experiments (e.g., GLOBEC,

1994). The successive physical calibrations were

based on previous experience (e.g., Geyer et al.,

1992; Signell and List, 1997), historical MWRA

(Murray et al., 1997) and UMASS data (G.B. Gard-

ner, personal communication), climatological data
(LOC; Lozier et al., 1996), satellite data (Porter,

1998; Rothschild et al., 1999), and FNMOC data for

surface atmospheric forcing. The biogeochemical data

used for the ecosystem model calibration were the

same as for its initialization.

B.2. Data for real-time model initialization

The physical data (Figs. 4a and 5a and b) used to

initialize the PE model consisted of real-time MBST-

98 hydrographic data collected during August 17–21,

1998 and MWRA data collected during August 1998,

and of historical MWRA and climatological LOC

hydrographic data to initialize the Outer Cape region

(east of Cape Cod; Fig. 1), which was not sampled

during the initialization surveys (see Lermusiaux,

2001).

For the calibration and initialization of the real-

time ecosystem simulations (Figs. 4b–d and 5c–e), a

subset of the MWRA August 1995 data (Murray et al.,

1997; Coniaris, 1997) was used. NO3 data from

NODC (http://www.nodc.noaa.gov/JOPI/) and Chl-a

data from MARMAP (O’Reilly and Zetlin, 1998)

were also employed to initialize the offshore part of

the model region, which was not sampled by the

MWRA.

B.3. Data collected during August–September 1998

and used for assimilation

During MBST-98, from August 17 until October 5,

observations were gathered on multiple scales using

ships (R/V Lucky Lady, UMASS; R/VOceanus,WHOI)

and several AUVs (Yu et al., 2002). The gathering

occurred in three phases (Rothschild et al., 1999): the

initialization surveys (August 17–21), update surveys

(September 2–4), and 2 weeks of intensive operations

(September 17–October 5). These data were collected

based on an adaptive sampling methodology carried

out in real time (Robinson et al., 1999; Lermusiaux,

2001). The adaptive sampling plans were designed

based on forecasts of fields and on forecasts of dom-

inant error or variability covariances, both of which

assimilated the prior data. The physical data consisted

of shipboard CTD (conductivity–temperature–depth)

data providing temperature and salinity profiles at Bay

scale, mesoscale, and submesoscale resolutions, and of

AUV data collected during September 17–October 5 at

 http:\\www.nodc.noaa.gov\JOPI\ 
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submesoscale and turbulence scale resolutions but only

in restricted areas of interest.

For the ecosystem, the R/V Lucky Lady sampled

the mesoscales and submesoscales, mainly in Cape

Cod Bay. It collected Chl-a fluorescence and PAR

data with sensors attached to its CTD, and bottle data

for NO3, NH4, Chl-a, and pheaopigment. The measure

of zooplankton using acoustic sensors (TAPS; Holli-

day et al., 1989) was tested and a few uncalibrated Z

profiles were obtained on October 4–5, 1998. The R/

V Oceanus sampled the mesoscales, north of Cape

Cod Bay and in the open boundary regions. It col-

lected Chl-a fluorescence data measured by a fluor-

ometer attached to its CTD. The fluorometer

measurements were calibrated to Chl-a using bottle

data afterwards (G. Strout, personal communication).

Further details on the MBST-98 data are reported in

Rothschild et al. (1999).

During MBST-98, the MWRA conducted four

surveys, which are also used in this study. In two of

these surveys (August 18–25 and October 5–16,

1998), 33 stations were visited throughout the Bay,

including Boston Harbor. The other two surveys,

conducted on September 3 and 24, 1998, were limited

to the vicinity of Boston Harbor. In addition to hydro-

graphic profiles, the MWRA collected water column

nutrient, Chl-a, dissolved oxygen, productivity, respi-

ration, and plankton profiles. These MWRA data are

described in Libby et al. (1999).

These MBST-98 and MWRA data sets are assimi-

lated in the postcruise simulations. The station posi-

tions for the first series of assimilations are given on

Fig. 15 (Fig. 11 gives the station positions for the

postcruise initialization). In the real-time simulations,

only the physical data sets are assimilated.
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