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Abstract10

A new methodology,multiscale energy and vorticity analysis(MS-EVA), is developed to in-11

vestigate the inference of fundamental processes from oceanic or atmospheric data for complex12

dynamics which are nonlinear, time and space intermittent, and involve multiscale interactions.13

Based on a localized orthogonal complementary subspace decomposition through the multiscale14

window transform (MWT), MS-EVA is real problem-oriented and objective in nature. The de-15

velopment begins with an introduction of the concepts of scale and scale window and the de-16

composition of variables on scale windows. We then derive the evolution equations for multi-17

scale kinetic and available potential energies and enstrophy. The phase oscillation reflected on18

the horizontal maps from Galilean transformation is removed with a 2D large-scale window19

synthesis. The resulting energetic terms are analyzed and interpreted. These terms, after being20

carefully classified, provide four types of processes: transport, transfer, conversion, and dissipa-21

tion/diffusion. The key to this classification is the transfer–transport separation, which is made22

possible by looking for a special type of transfer, the so-calledperfect transfer. The intricate23

energy source information involved in perfect transfers is differentiated through an interaction24

analysis.25

The transfer, transport, and conversion processes form the basis of dynamical interpretation for26

GFD problems. They redistribute energy in the phase space, physical space, and space of energy27

types. These processes are all referred to in a context local in space and time, and therefore can be
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easily applied to real ocean problems. When the dynamics of interest is on a global or duration scale,28

MS-EVA is reduced to a classical Reynolds-type energetics formalism.29

Elsevier B.V. All right reserved.30
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32

1. Introduction33

Energy and vorticity analysis is a widely used approach in the diagnosis of geophysical34

fluid processes. During past decades, much work has been done along this line, examples35

includingHolland and Lin (1975), Harrison and Robinson (1978), Plumb (1983), Pinardi36

and Robinson (1986), Spall (1989), Cronin and Watts (1996), to name but a few. While these37

classical analyses have been successful in their respective applications, real ocean processes38

usually appear in more complex forms, involving interactions among multiple scales and39

tending to be intermittent in space and time. In order to investigate ocean problems on a40

generic basis, capabilities of classical energetic analyses need to be expanded to appropri-41

ately incorporate and faithfully represent all these processes. This forms the objective of42

this work.43

We develop a new methodology, multiscale energy and vorticity analysis (MS-EVA),44

to fulfill this objective. MS-EVA is a generic approach for the investigation of multiscale45

nonlinear interactive oceanic processes which occur locally in space and time. It aims46

to explore pattern generation and energy and enstrophy budgets, and to unravel the in-47

tricate relationships among events on different scales and in different locations. In the48

sequels to this paper (referred to as LR1),Liang and Robinson (2003a,b)(LR2 and LR349

hereafter), we will show how MS-EVA can be utilized for instability analysis and how50

it can be applied to solve real ocean problems which would otherwise be difficult to51

solve.52

In order to be real problem-oriented, MS-EVA should contain full physics. Approxima-53

tions such as linearization are thus not allowed. It must also have a multiscale representa-54

tion which retains time and space localization. In other words, the representation should55

retain time intermittency, and should be able to handle events occurring on limited, irreg-56

ular and time dependent domains. This makes MS-EVA distinctly different from classical57

formalism.58

MS-EVA should also bescale windowed, i.e., the multiscale decomposition must be able59

to represent events occurring coherently on scale ranges, orscale windows. Loosely speak-60

ing, a scale window is simply a subspace with a certain range of scales. A rigorous definition61

is deferred to Section2. In general, GFD processes tend to occur on scale windows, rather62

than individual scales. We refer to this phenomenon as scale windowing. Scale windowing63

requires a special bulk treatment of energy rather than individual scale representations, as64

transfers between individual scales belonging respectively to different windows could take65

a direction opposite to the overall transfer between these windows.66

Multiscale events could be represented in different forms. One of the most frequently67

used is wave representation (e.g., Fourier analysis), which transforms events onto many68
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individual scales; another frequently used form is called eddy representation(Tennekes and69

Lumley, 1972), in which a process is decomposed into a large-scale part and an eddy part,70

each part involving a range of scales. Because of its scale window nature, we need an eddy71

representation for MS-EVA. The resulting energetics will be similar to those of Reynolds72

formulation, except that the latter is in a statistical context.73

To summarize, it is required that MS-EVA handle fairly generic processes in the sense74

of multiscale windowing, spatial localization, and temporal intermittency; as well as re-75

tain full physics. Correspondingly an analysis tool is needed in the MS-EVA formulation76

such that all these requirements are met. We will tackle this problem in a spirit simi-77

lar to the wavelet transform, a localized analysis which has been successfully applied to78

studying energetics for individual scales (e.g.,Iima and Toh, 1995; Fournier, 1999). Specif-79

ically, we need to generalize the wavelet analysis to handle window or eddy decomposition.80

The challenge is how to incorporate into a window the transform coefficients (and hence81

energies) of an orthonormal wavelet transform which are defined discretely at different82

locations for different scales, while retaining a resolution satisfactory to the problem. (Or-83

thonormality is essential to keep energy conserved.) The next section is intended to deal84

with this issue. The new analysis tool thus constructed will be termedmultiscale window85

transform, or MWT for short. The whole problem is now reduced to first the building86

of MWT, and then the development of MS-EVA with the MWT. In Sections3–7, we87

apply MWT to derive the laws that govern the multiscale energy evolutions. The multi-88

scale decomposition is principally in time, but with a horizontal treatment which preserves89

spatial localization. Time scale decomposition has been a common practice and meteo-90

rologists find it useful for clarifying atmospheric processes. We choose to do so in order91

to make contacts with the widely used Reynolds averaging formalism, and more impor-92

tantly, to have the conceptscaleunambiguously defined (cf. Section2.1), avoiding extra93

assumptions such as space isotropy or anisotropy. Among these sections, Section3 is de-94

voted to define energy on scale windows, and Section4 is for a primary treatment with95

the nonlinear terms. The multiscale kinetic and potential energy equations are first de-96

rived in Sections5 and 6based on a time decomposition, and then modified to resolve97

the spatial issue with a horizontal synthesis (Section7). In Section8, we demonstrate98

how these equations are connected to energetics in the classical formalism. This section99

is followed by an interaction analysis for the differentiation of transfer sources (Section100

9), which allows a description of the energetic scenario with our MS-EVA analysis in101

both physical and phase spaces (Section10). As “vorticity” furnishes yet another part of102

MS-EVA, in Section11 we briefly present how enstrophy evolves on multiple scale win-103

dows. This work is summarized in Section12, where prospects for application are outlined104

as well.105

2. Multiscale window analysis and marginalization106

In this section, we introduce the concept of scale window, multiscale window transform107

(MWT), and some properties of the MWT, particularly a property referred to as marginal-108

ization. A thorough and rigorous treatment is beyond the scope of this paper. For details,109

the reader is referred toLiang (2002)(L02 hereafter) andLiang and Anderson (2003).



U
N

C
O

R
R

E
C

TE
D

 P
R

O
O

F

DYNAT 708 1–36

4 X. San Liang, A.R. Robinson / Dynamics of Atmospheres and Oceans xxx (2005) xxx–xxx

2.1. Scale and scale window110

The introduction of MWT relies on how a scale is defined. In this context, our definition111

of scale is based on a modified wavelet analysis (cf.,Herńandez and Weiss, 1996). For112

convenience, we limit the initial discussion to 1D functions. The multi-dimensional case is113

a direct extension and can be found in L02, Section 2.7. For any functionp(t) ∈ L2[0,1],1114

it can been analyzed as (L02):115

p(t) =
+∞∑
j=0

2j�−1∑
n=0

p̃jnψ
�,j
n (t), t ∈ [0,1], (1)116

where117

ψ�,j
n (t) =

+∞∑
	=−∞

2j/2ψ[2j(t + �	) − n], n = 0,1, . . . ,2j�− 1 (2)118

andψ is some orthonormalized wavelet function.2 Here we choose it to be the one built119

from cubic splines, which is shown inFig. 1a. The “period”� has two choices only: one120

is � = 1, which gives a periodic extension of the signal of interest from [0,1] to the whole121

real lineR; another is� = 2, corresponding to an extension by reflection, which is also an122

“even periodization” of the finite signal toR (see L02 for details).123

The distribution ofψ1,j
n (t) with j = 2,4,6 is shown inFig. 1b. Eachj corresponds to a124

quantity 2−j, which can be used to define a time metric to relate the passage of temporal125

events since a selected epoch. We call thisj ascale level, and 2−j the correspondingscale126

over [0,1].127

Given the scale as conceptualized, we proceed to define scale windows. In the analysis128

(1), we can group together those parts with a certain range of scale levels, say, (j1, j1 +129

1, . . . , j2), to form a subspace ofL2[0,1]. This subspace is called ascale windowof130

L2[0,1] in L02 with scale levels ranging fromj1 to j2. In doing this, any function in131

L2[0,1], sayp(t), can be decomposed into a sum of several parts, each encompassing132

exclusively features on a certain window of scales. Specifically for this work, we define three133

scale windows:134

• large-scale window: 0≤ j ≤ j0,135

• meso-scale window:j0 < j ≤ j1,136

• sub-mesoscale window:j1 < j ≤ j2.137

The scale level boundsj0, j1, j2 are set according to the problem under consideration.138

Particularly,j2 corresponds to the finest resolution (sampling interval 2−j2) permissible139

by the given finite signals. By projectingp(t) onto these three windows, we obtain its140

large-scale, meso-scale, and sub-mesoscale features, respectively. This decomposition is141

orthogonal, so the total energy thus yielded is conserved.142

1 The notationL2[0,1] is used to indicate the space of square integrable functions defined on [0,1].
2 This is to say,{ψ(t − 	), 	 ∈ Z} (Z the set of integers) forms an orthonormal set.
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Fig. 1. Scaling and wavelet functions (a) and their corresponding periodized bases (� = 1) {φ�,jn (t)}n (left panel)
and{ψ�,j

n (t)}n (right panel) with scale levelsj = 2 (top),j = 4 (middle), andj = 6 (bottom), respectively (b).
The scaling and wavelet functionsφ andψ are constructed from cubic splines (seeLiang, 2002, Section 2.5).

2.2. Multiscale window transform143

Scale windows are defined with the aid of wavelet basis, but the definition of multiscale144

window transform does not follow the same line because of the difficulty we have described145
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in the introduction, i.e., that orthonormal wavelet transform coefficients are defined dis-146

cretely on different locations for different scales. To circumvent this problem, we make a147

direct sum of the subspaces spanned by the wavelet basis{ψ�,m
n (t)}n, for all m ≤ j. The148

shift-invariant basis of the resulting subspace can be shown to beφ
�,j
n (t) (L02), which is149

the periodization [cf. (2)] of someφ(t), the orthonormal scaling function in company with150

the wavelet functionψ(t). Hereφ is an orthonormalized cubic spline, as shown inFig. 1a.151

We utilize theφ�,jn thus formed to fulfill our task. In the following only the related formulas152

and equations are presented. The details are referred to L02.153

LetV�,j2 indicate the total (direct sum, to be strict) of the three scale windows. It has been154

established by L02 that any time signal from a given GFD dataset is justifiably belonging155

to V�,j2, with some finite levelj2. Suppose we havep(t) ∈ V�,j2. Write156

p̂jn =
∫ �

0
p(t)φ�,jn (t) dt, for all 0 ≤ j ≤ j2, n = 0,1, . . . ,2j�− 1. (3)157

Given window boundsj0, j1, j2, andp ∈ V�,j2, three functions can be accordingly defined:158

p∼0(t) =
2j0�−1∑
n=0

p̂j0
n φ

�,j0
n (t), (4)159

p∼1(t) =
2j1�−1∑
n=0

p̂j1
n φ

�,j1
n (t) − p∼0(t), (5)160

p∼2(t) = p(t) −
2j1�−1∑
n=0

p̂j1
n φ

�,j1
n (t), (6)161

on the basis of which we will build the MWT later. As a scaling transform coefficient, ˆp
j
n162

contains all the information with scale level lower than or equal toj. The functionsp∼0(t),163

p∼1(t), p∼2(t) thus defined hence include only features ofp(t) on ranges 0− j0, j0 − j1,164

andj1 − j2, respectively. For this reason, we term these functions as large-scale, meso-scale,165

and sub-mesoscale syntheses or reconstructions ofp(t), with the notation∼0, ∼1, and∼2166

in the superscripts signify the corresponding large-scale, meso-scale, and sub-mesoscale167

windows, respectively.168

Using the multiscale window synthesis, we proceed to define a transform169

p̂∼�
n =

∫ �

0
p∼�(t)φ�,j2

n (t) dt (7)170

for windows� = 0,1,2,n = 0,1, . . . ,2j2� − 1. This is themultiscale window transform,171

or MWT for short, that we want to build. Notice here we use a periodized scaling basis at172

j2, the highest level that can be attained for a given time series. As a result, the transform173

coefficients have a maximal resolution in the sampledt direction.174
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In terms ofp̂∼�
n , Eqs.(4)–(6)can be simplified as175

p∼�(t) =
2j2�−1∑
n=0

p̂∼�
n φ�,j2

n (t), (8)176

for � = 0,1,2. Eqs.(7) and (8)are the transform-reconstruction pair for our MWT. For177

anyp ∈ V�,j2, it can be now represented as178

p(t) =
2∑

�=0

2j2�−1∑
n=0

p̂∼�
n φ�,j2

n (t). (9)179

A final remark on the choice of extension scheme, or the “period”� in the analysis. In180

general, we always adopt the extension by reflection� = 2, which has proved to be very181

satisfactory. (Fig. 4 shows such an example.) If the signals given are periodic, then the182

periodic extension is the exact one, and hence� should be chosen to be 1. In case of linking183

to the classical energetic formalism,� = 1 is also usually used.184

2.3. MWT properties and marginalization185

Multiscale window transform has many properties. In the following we present two of186

them which will be used later in the MS-EVA development (for proofs, refer to L02).187

Property 1. For anyp ∈ V�,j2, if j0 = 0,and� = 1 (periodic extension adopted), then188

p̂∼0
n = 2−j2/2p∼0(t) = 2−j2/2p̄ = constant, for all n, and t, (10)189

where the overbar stands for averaging over the duration.190

Property 2. For p and q inV�,j2,191

Mnp̂
∼�
n q̂∼�

n = p∼�(t)q∼�(t), (11)192

where193

Mn(p̂∼�
n q̂∼�

n ) =
N−1∑
n=1

p̂∼�
n q̂∼�

n + 1

2
[p̂∼�

0 q̂∼�
0 + p̂∼�

N q̂∼�
N ]. (N = 2j2) (12)194

Property 1states that whenj0 = 0 and a periodic extension is used, the large-scale195

window synthesis is simply the duration average.Property 2involves a special summation196

over [0, N] (corresponding tot ∈ [0,1]), which we will call marginalizationhereafter.197

The word “marginal” has been used in literature to describe the overall feature of a198

localized transform (e.g.,Huang et al., 1999). We extend this convention to establish an199

easy reference for the operatorMn. Property 2can now be restated as: a product of two200

multiscale window transforms followed by a marginalization is equal to the product of201

their corresponding syntheses averaged over the duration. For convenience, this property202

will be referred to asproperty of marginalization.203

We close this section by making a comparison between our MWT and wavelet anal-204

ysis. The commonality is, of course, that both of them are localized on the definition205
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domain. The first and largest difference between them is that the MWT is not a trans-206

form in the usual sense. It is an orthogonal complementary subspace decomposition, and207

as a result, the MWT coefficients contain information for a range of scales, instead of208

a single scale. For this reason, it is required that three scale bounds be specified a pri-209

ori in constructing the windows. A useful way to do this is through wavelet spectrum210

analysis, as is used in LR3. Secondly, the MWT transform is projected onV�,j2, so trans-211

form coefficients obtained for all the windows have the same resolution—the maximal212

resolution allowed for the signal. This is in contrast to wavelet analysis, whose transform213

coefficients have different resolution on different scales. We will see soon that, this maxi-214

mized resolution in MWT transform coefficients puts the embedded phase oscillation under215

control.216

3. Multiscale energies217

Beginning this section through Section7, we will derive the equations that gov-218

ern the multiscale energy evolutions. The whole formulation is principally based on219

a time decomposition, but with an appropriate filtering in the horizontal dimensions.220

It involves a definition of energies on different scale windows, a classification of dis-221

tinct processes from the nonlinear convective terms, a derivation of time windowed222

energetic equations, and a horizontal treatment of these equations with a space win-223

dow reconstruction. In this section, we define the energies for the three time scale224

windows.225

3.1. Primitive equations and kinetic and available potential energies226

The governing equations adopted in this study are:227

∂v
∂t

= −∇ · (v v) − ∂(wv)

∂z
− fk ∧ v − 1

ρ0
∇P + Fmz + Fmh, (13)228

0 = ∇ · v + ∂w

∂z
, (14)229

0 = −∂P

∂z
− ρg, (15)230

∂ρ

∂t
= −∇ · (vρ) − ∂(wρ)

∂z
+ N2ρ0

g
w+ Fρz + Fρh, (16)231

wherev = (u, v) is the horizontal velocity vector,∇ = i ∂
∂x

+ j ∂
∂y

the horizontal gradient232

operator,N = (− g
ρ0

∂ρ̄
∂z

)
1/2

the buoyancy frequency (ρ̄ = ρ̄(z) is the stationary density pro-233

file), ρ the density perturbation with̄ρ excluded, andP the dynamic pressure. All the other234

notations are conventional. The friction and diffusion terms are just symbolically expressed.235

The treatment of these subgrid processes in a multiscale setting is not considered in this236

paper. From Eqs.(13) and (14), it is easy to obtain the equations that govern the evolution237
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of two quadratic quantities:K = 1
2v · v, andA = 1

2
g2

ρ2
0N

2ρ
2 (seeSpall, 1989). These are238

the total kinetic energy (KE) and available potential energy (APE), given the location in239

space and time. The essence of this study is to investigate how KE and APE are distributed240

simultaneously in the physical and phase spaces.241

3.2. Multiscale energies242

Multiscale window transforms equipped with the marginalization property(11) allow243

a simple representation of energy for each scale window� = 0,1,2. For a scalar field244

S(t) ∈ V�,j2, letE�∗
n = (Ŝ∼�

n )
2
. By (11),245

MnE
�∗
n =

∫ 1

0
[S∼�(t)]2 dt, (17)246

which is essentially the energy ofSon window� (up to some constant factor) integrated247

with respect tot over [0,1). RecallMn is a special sum over the 2j2 discrete equi-distance248

locationsn = 0,1, . . . ,2j2 − 1. E�∗
n thus can be viewed as the energy on window�249

summarized over a small interval of length+t = 2−j2 around locationt = 2−j2n. An energy250

variable for window� at time 2−j2n consistent with the fields at that location is therefore251

a locally averaged quantity252

E�
n = 1

+t
E�∗
n = 2j2 · (Ŝ∼�

n )
2
, (18)253

for all � = 0,1,2. It is easy to establish that254

Mn(E0
n + E1

n + E2
n)+t =

∫ 1

0
S2(t) dt. (19)255

This is to say, the energy thus defined is conserved.256

In the same spirit, the multiscale kinetic and available potential energies now can be257

defined as follows:258

K�
n = 1

2
[2j2(û∼�

n )2 + 2j2(v̂∼�
n )2] = 2j2

[
1

2
v̂∼�
n · 1

2
v̂∼�
n

]
(20)259

A�
n = 2j2

[
1

2

g2

ρ2
0N

2
ρ̂∼�
n · ρ̂∼�

n

]
= 2j2

[
1

2
cρ̂∼�

n ρ̂∼�
n

]
, (21)260

where the shorthandc ≡ g2/(ρ2
0N

2) is introduced to avoid otherwise cumbersome deriva-261

tion of the potential energy equation. (Notec is z-dependent.) The purpose of the following262

sections are to derive the evolution laws forK�
n andA�

n . Note the factor 2j2, which is a263

constant once a signal is given, provides no information essential to our dynamics analysis.264

In the MS-EVA derivation, we will drop it in order to avoid otherwise awkward expres-265

sions. Therefore,all the energetic terms hereafter, unless otherwise indicated, should be266

multiplied by2j2 before physically interpreted.
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4. Perfect transfer and transfer–transport separation267

The MS-EVA is principally developed for time, but with a horizontal treatment for268

spatial oscillations. Localized energetic study with a time decomposition (and the statistical269

formulation) raises an issue: the separation of transport from the nonlinear term-related270

energetics. Here by transport we mean a process which can be represented by some quantity271

in a form of divergence. It vanishes if integrated over a closed domain. The separation of272

transport is very important, since it allows the cross-scale energy transfer to come upfront.273

Transfer–transport separation is not a problem in a space decomposition-based energetic274

formulation, e.g., the Fourier formulation. In that case the analysis over the space has already275

eliminated the transport, and as a result, the summation of the triad interaction terms over all276

the possible scales vanishes. This problem surfaces in a localized time-based formulation277

when uniqueness is concerned. In this section, we will show how it is resolved.278

We begin by introducing a concept,perfect transfer process, for our purpose. The so-279

calledperfect transferis a family of multiscale energetic terms which vanish upon sum-280

mation over all the scale windows and marginalization over the sampled time locations. A281

perfect transfer process, or simply perfect transfer when no confusion arises in the context,282

is then a process represented by perfect transfer term(s). Perfect transfers move energy from283

window to window without destroying or generating energy as a whole. They represent a284

kind of redistribution process among multiple scale windows. In terms of physical signifi-285

cance, the concept of perfect transfer is a natural choice. We are thence motivated to seek286

through a larger class of “transfer processes” for perfect transfers, which set a constraint287

for transport–transfer separation and hence help to solve the above uniqueness problem.288

For a detailed derivation of the transport–transfer separation, refer toLiang and Robinson289

(2003c). Briefly cited here is the result with some modification to the needs in our context.290

The idea is that, for an incompressible fluid flow, we can have the nonlinear-term related291

energetics separated into a transport plus a perfect transfer, and the separation is unique.292

For simplicity, consider a scalar fieldS = S(t, x, y). Suppose it is simply advected by an293

incompressible 2D flowv, i.e., the evolution is governed by294

∂S

∂t
= −∇ · (vS), ∇ · v = 0. (22)295

Let E�
n = 1

2(Ŝ∼�
n )

2
be its energy (variance) at time locationn on scale window�. The296

evolution ofE�
n can be easily obtained by making a transform of the equation followed by297

a product withŜ∼�
n . We are tasked to separate the resulting triple product term298

NL = −Ŝ∼�
n ∇ · (v̂S)

∼�

n299

as needed. By L02, this is done by performing the separation as300

NL = −∇ ·Q
S�n

+ [−Ŝ∼�
n ∇ · (v̂S)

∼�

n + ∇ · Q
S�n

] ≡ +hQS�n + TS�n , (23)301

where302

Q
S�n

= λcŜ
∼�
n (v̂S)

∼�

n , λc = 1
2, (24)303
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and304

+hQS�n ≡ −∇ ·Q
S�n

(25)305

TS�n ≡ −Ŝ∼�
n ∇ · (v̂S)

∼�

n + ∇ · Q
S�n
. (26)306

It is easy to verify that307 ∑
�

MnTS�n = 0, (27)308

which implies thatTS�n represents a perfect transfer process.309

Eq. (23) is the transport–transfer separation for the scalar variance evolution in a 2D310

flow. For the 3D case, the separation is in the same form. One just needs to change the311

vectors and the gradient operator in(23) into their corresponding 3D counterparts.312

5. Multiscale kinetic energy equation313

The formulation of multiscale energetics generally follows from the derivation for the314

evolutions ofK andA. The difference lies in that here we consider our problem in the315

phase space. Since the basis functionφ�,j, for any 0≤ j ≤ j2, is time dependent, and the316

derivative ofφ�,j does not in general form an orthogonal pair withφ�,j itself, the local time317

change terms in the primitive equations need to be pre-treated specially before the energy318

equations can be formulated. Similar problems also exist inHarrison and Robinson (1978)’s319

formalism. Appearing on the left hand side of their kinetic energy equation isv̄ · ∂v̄
∂t

, not in320

a form of time change of12 v̄ · v̄.321

To start, first consider∂v/∂t. Recall that our objective is to develop a diagnostic tool322

for an existing dataset. Thus every differential term has to be replaced eventually by its323

difference counterpart. That is to say, we actually do not need to deal with∂v/∂t itself.324

Rather, it is the discretized form (space-dependence suppressed for clarity)325

v(t ++t) − v(t −+t)

2+t
≡ δtv326

that we should pay attention to (+t is the time step size). Viewed as functions oft, v(t ++t)327

andv(t −+t) make two different series and may be transformed separately. Let328 ∫ �

0
v∼�(t ++t)φ�,j2

n (t) dt ≡ v̂∼�
n+ , (28)329 ∫ �

0
v∼�(t −+t)φ�,j2

n (t) dt ≡ v̂∼�
n− , (29)330

where� is the periodicity of extension (� = 1 and 2 for extensions by periodization and331

refection, respectively), and define an operatorδ̂n such that332

δ̂nv̂∼�
n = v̂∼�

n+ − v̂∼�
n−

2+t
. (30)333
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δ̂nv̂∼�
n is actually the transform ofδtv, or the rate of change of̂v∼�

n on its corresponding334

scale window. Similarly, define difference operators of the second order as follows:335

δ2
t2
v ≡ v(t ++t) − 2v(t) + v(t −+t)

(+t)2
, (31)336

δ̂2
n2v̂∼�

n ≡
∫ �

0
δ2
t2
v∼� φ�,j2

n (t) dt. (32)337

Now take the dot product of̂v∼�
n with δ̂nv̂∼�

n ,

v̂∼�
n · δ̂nv̂∼�

n =
(

− v̂∼�
n+ − 2v̂∼�

n + v̂∼�
n−

2
+ v̂∼�

n+ + v̂∼�
n−

2

)
· v̂

∼�
n+ − v̂∼�

n−
2+t

= 1

2+t

(
1

2
v̂∼�
n+ · v̂∼�

n+ − 1

2
v̂∼�
n− · v̂∼�

n−

)
− (+t)2(δ̂2

n2v̂∼�
n · δ̂nv̂∼�

n )

= δ̂nK
�
n − (+t)2(δ̂2

n2v̂∼�
n · δ̂nv̂∼�

n ), (33)

where338

K�
n = 1

2 v̂
∼�
n · v̂∼�

n (34)339

is the kinetic energy at locationn (in the phase space) for the window� (the factor 2j2340

omitted). Note thatK�
n is different fromK̂∼�

n . The latter is the multiscale window transform341

of K, not a concept of “energy”. Another quantity that might be confused withK�
n isK∼� ,342

or the fieldK reconstructed on window�. K∼� is a property in physical space. It is343

conceptually different from the phase space-basedK�
n for velocity.344

Observe that the first term on the right hand side of Eq.(33) is the time change (in345

difference form) of the kinetic energy on window� at time 2−j2n (scaled by the series346

length). The second term, which is proportional to (+t)2, is in general very small (of347

orderO[(+t)2] compared tôδnK�
n ). As shown inAppendix A, it could be significant only348

when processes with scales of grid size are concerned. Besides, it is expressed in a form349

of discretized Laplacian. We may thereby view it indistinguishably as a kind of subgrid350

parameterization and merge it into the dissipation terms. The termv̂∼�
n · δ̂nv̂∼�

n , which is351

akin to Harrison and Robinson’s̄v · ∂v̄
∂t

, is thus merely the change rate ofK�
n , with a small352

correction of order (+t)2 (t scaled by the series duration).353

Terms other than∂tv and∂tρ in a 3D primitive equation system do not have time deriva-354

tives involved. Multiscale window transforms can be applied directly to every field variable355

in spite of the spatial gradient operators, if any. To continue the derivation, first take a356

multiscale window transform of(14),357

∂ŵ∼�
n

∂z
+ ∇ · v̂∼�

n = 0. (35)358

Dot product of the momentum equation reconstructed from(13) on window � with359

v̂∼�
n φ

�,j2
n (t), followed by an integration with respect tot over the domain [0,�), gives360

the kinetic energy equation for window�. We are now to arrange the right hand side of361

this equation into a sum of some physically meaningful terms.362



U
N

C
O

R
R

E
C

TE
D

 P
R

O
O

F

DYNAT 708 1–36

X. San Liang, A.R. Robinson / Dynamics of Atmospheres and Oceans xxx (2005) xxx–xxx 13

Look at the pressure work first. By Eq.(35), it is∫ �

0
−v̂∼�

n · ∇P∼�

ρ0
φ�,j2
n (t) dt

= −v̂∼�
n · ∇P̂∼�

n

ρ0
= − 1

ρ0

[
∇ · (P̂∼�

n v̂∼�
n ) + ∂

∂z
(P̂∼�

n ŵ∼�
n )

]
+ ŵ∼�

n

∂P̂∼�
n

∂z

= − 1

ρ0

[
∇ · (P̂∼�

n v̂∼�
n ) + ∂

∂z
(P̂∼�

n ŵ∼�
n )

]
− g

ρ0
ŵ∼�
n ρ̂∼�

n

≡ +hQP�
n

++zQP�
n

− b�n , (36)

where+hQP�
n

and+zQP�
n

(QP the pressure flux) are respectively the horizontal and363

vertical pressure working rates (Q stands for flux, a convention in many fluid mechan-364

ics textbooks). The third term,−b�n = − g
ρ0
ŵ∼�
n ρ̂∼�

n , is the rate of buoyancy conversion365

between the kinetic and available potential energies on window�.366

Next look at the friction termsFmz andFmh in Eq. (13). They stand for the effect of367

unresolved sub-grid processes. An explicit expression of them is problem-specific, and is368

beyond of scope of this paper. We will simply write these two terms asFK�,z andFK�,h,369

which are related to theFmz andFmh in Eq.(13)as follows:370

FK�
n ,z = v̂∼�

n · (F̂mz)
∼�
n , (37)371

FK�
n ,h = v̂∼�

n · (F̂mh)∼�
n + (+t)2(δ̂2

n2v̂∼�
n · δ̂nv̂∼�

n ). (38)372

In the above, the correction toδ̂nK�
n in (33)has been included, as it behaves like a kind of373

horizontal dissipation.374

For the remaining part, the Coriolis force does not contribute to increaseK�
n . The375

nonlinear terms are what we need to pay attention. Specifically, we need to separate376

NL = −v̂∼�
n · ∇ · (v̂ v)∼�

n − v̂∼�
n · ∂

∂z
(ŵv)∼�

n377

into two classes of energetics which represent transport and transfer processes, respectively.378

This can be achieved by performing a decomposition as we did in Section4 for the 3D case,379

with the field variableS in (23) replaced byu andv, respectively. Let380

Q
h

= λcv̂∼�
n · (v̂ v)∼�

n = λcv̂∼�
n · (v̂ v)∼�

n , (39)381

Qz = λcv̂∼�
n · (ŵv)∼�

n , (40)382

whereλc = 1
2. Further define383

+hQK�
n

= −∇ ·Q
h
, (41)384

+zQK�
n

= −∂Qz

∂z
, (42)385
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T ∗
K�
n ,h

= −v̂∼�
n · ∇ · (v̂ v)∼�

n + ∇ · Q
h
, (43)386

T ∗
K�
n ,z

= −v̂∼�
n · ∂

∂z
(ŵv)∼�

n + ∂Qz

∂z
. (44)387

Then it is easy to show that388

NL = (+hQK�
n

++zQK�
n

) + (T ∗
K�
n ,h

+ T ∗
K�
n ,z

) (45)389

is the transport–transfer separation for which we are seeking, with

T ∗
K�
n ,h

+ T ∗
K�
n ,z

= 1

2

[−v̂∼�
n · ∇ · (v̂ v)∼�

n + ∇v̂∼�
n : (v̂ v)∼�

n

− ∂

∂z
(ŵv)∼�

n · v̂∼�
n + ∂v

∂z
· (ŵv)∼�

n

]
(46)

the perfect transfer.390

In (45), although (T ∗
K�
n ,h

+ T ∗
K�
n ,z

) as a whole is perfect,T ∗
K�
n ,h

or T ∗
K�
n ,z

alone is not. In391

order to make them so, introduce the following terms:392

TK�
n ,h = T ∗

K�
n ,h

− K̂∼�
n ∇ · v̂∼�

n , (47)393

TK�
n ,z = T ∗

K�
n ,z

− K̂∼�
n

∂ŵ∼�
n

∂z
, (48)394

whereK̂∼�
n is the multiscale window transform ofK = 1

2v · v as a field variable (not395

K�
n , the kinetic energy on window�). Clearly (T ∗

K�
n ,h

+ T ∗
K�
n ,z

) = (TK�
n ,h + TK�

n ,z) by396

the continuity Eq.(35). It is easy to verify that bothTK�
n ,h andTK�

n ,z are perfect transfers397

using the marginalization property. Decomposition(45)now becomes398

NL = (+hQK�
n

++zQK�
n

) + (TK�
n ,h + TK�

n ,z). (49)399

In summary, the kinetic energy evolution on window� is governed by

δ̂nK
�
n = −∇ · Q

h
− ∂Qz

∂z
+ [−v̂∼�

n · ∇ · (v̂ v)∼�
n + ∇ · Q

h
− K̂∼�

n ∇ · v̂∼�
n ]

+
[
−v̂∼�

n · ∂

∂z
(ŵv)∼�

n + ∂Qz

∂z
− K̂∼�

n

∂ŵ∼�
n

∂z

]
− ∇ ·

(
v̂∼�
n

P̂∼�
n

ρ0

)
− ∂

∂z

(
ŵ∼�
n

P̂∼�
n

ρ0

)
− g

ρ0
ŵ∼�
n ρ̂∼�

n + FK�
n ,z + FK�

n ,h, (50)

whereQ
h

andQz are defined in(39)and(40). Symbolically this is,

K̇�
n = +hQK�

n
++zQK�

n
+ TK�

n ,h + TK�
n ,z ++hQP�

n
++zQP�

n

− b�n + +FK�
n ,z + FK�

n ,h. (51)

In Appendix Da list of these symbols and their meanings is presented.
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6. Multiscale available potential energy equation400

To arrive at the multiscale available potential energy equation, take the scale win-401

dow transform of the time-discretized version of Eq.(16) and multiply it by cρ̂∼�
n402

(c ≡ g2/(ρ2
0N

2)). The left hand side becomes, as before,403

cρ̂∼�
n (δ̂tρ)∼�

n = cρ̂∼�
n δ̂nρ̂

∼�
n = δ̂nA

�
n − (+t)2c(δ̂2

n2ρ̂
∼�
n · δ̂nρ̂∼�

n ),404

where405

A�
n = 1

2
c(ρ̂∼�

n )2 = 1

2

g2

ρ2
0N

2
(ρ̂∼�

n )2 (52)406

(constant multiplier 2j2 omitted) is the available potential energy at locationn in the phase407

space (corresponding to the scaled time 2−j2n) for the window�. Compared tôδnA�
n , the408

correction is of order (+t)2, and could be significant only at small scales, as argued for the409

kinetic energy case.410

For the advection-related terms, the transform followed by a multiplication withcρ̂∼�
n

yields

(AD) = cρ̂0
n

∫ �

0

(
−∇ · (vρ)∼� − ∂(wρ)∼�

∂z

)
φ�,j2
n (t) dt

= −cρ̂∼�
n ∇ · (v̂ρ)∼�

n − cρ̂∼�
n

∂

∂z
(ŵρ)∼�

n .

As has been explained in Section4, we need to collect flux-like terms. In the phase space,411

these terms are:412

+hQA�
n

≡ −∇ · [λccρ̂
∼�
n (v̂ρ)∼�

n ], (53)413

+zQA�
n

≡ − ∂

∂z
[λccρ̂

∼�
n (ŵρ)∼�

n ], (54)414

whereλc = 1
2. With this flux representation, (AD) is decomposed as

(AD) = +hQA�
n

++zQA�
n

− [cρ̂∼�
n ∇ · (v̂ρ)∼�

n ++hQA�
n

]

−
[
cρ̂∼�

n

∂

∂z
(ŵρ)∼�

n ++zQA�
n

]
.

The two brackets as a whole represent a perfect transfer process. However, neither of them415

alone does so. For physical clarity, we need to make some manipulation.416

Making use of Eq.(35), and denoting417

TSA�
n

≡ λcρ̂
∼�
n (ŵρ)∼�

n

∂c

∂z
, (55)418
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the above decomposition can be written as

(AD) = +hQA�
n

++zQA�
n

− [cρ̂∼�
n ∇ · (v̂ρ)∼�

n ++hQA�
n

− λcc((ρ̂2)∼�
n ∇ · v̂∼�

n )]

−
[
cρ̂∼�

n

∂

∂z
(ŵρ)∼�

n ++zQA�
n

+ TSA�
n

− λcc

(
(ρ̂2)∼�

n

∂ŵ∼�
n

∂z

)]
+ TSA�

n

≡ +hQA�
n

++zQA�
n

+ TA�
n ,∂hρ + TA�

n ,∂zρ + TSA�
n
, (56)

where+hQA�
n

and+zQA�
n

are, as we already know, the horizontal and vertical transports.419

The other pair,420

TA�
n ,∂hρ ≡ −cρ̂∼�

n ∇ · (v̂ρ)∼�
n −+hQA�

n
+ λcc((ρ̂2)∼�

n ∇ · v̂∼�
n ) (57)421

TA�
n ,∂zρ ≡ −cρ̂∼�

n

∂

∂z
(ŵρ)∼�

n −+zQA�
n

− TSA�
n

+ λcc

(
(ρ̂2)∼�

n

∂ŵ∼�
n

∂z

)
(58)422

represent two perfect transfer processes, as can be easily verified with the definition in423

Section4.424

If necessary,+hQA�
n

andTA�
n ,∂hρ can be further decomposed as425

+hQA�
n

= +xQA�
n

++yQA�
n
, (59)426

TA�
n ,∂hρ = TA�

n ,∂xρ + TA�
n ,∂yρ, (60)427

where+xQA�
n

(TA�
n ,∂xρ) and+yQA�

n
(TA�

n ,∂yρ) are given by the equation for+hQA�
n

428

(TA�
n ,∂hρ) with the gradient operator∇ replaced by∂/∂x and∂/∂y, respectively.429

Besides the above fluxes and transfers, there exists an extra term430

TSA�
n

≡ λcρ̂
∼�
n (ŵρ)∼�

n

∂c

∂z
= −λccρ̂

∼�
n (ŵρ)∼�

n

∂(logN2)

∂z
(61)431

in the (AD) decomposition (recallc = g2/ρ2
0N

2). This term represents an appar-432

ent source/sink due to the stationary vertical shear of density, as well as an energy433

transfer.434

Next consider the termwN2ρ0
g

. Recall thatN2 is a function ofzonly. It is thus immune435

to the transform. So436

cρ̂∼�
n

ρ0

g
· (ŵN2)∼�

n = c
N2ρ0

g
ρ̂∼�
n ŵ∼�

n = g

ρ0
ŵ∼�
n ρ̂∼�

n = b�n , (62)437

which is exactly the buoyancy conversion between available potential and kinetic energies438

on window�.439

The diffusion terms are treated the same way as before, they are merely denoted as440

FA�
n ,z = cρ̂∼�

n (F̂ρ,z)
∼�

n , (63)441

FA�
n ,h = cρ̂∼�

n (F̂ρ,h)
∼�

n + (+t)2c(δ̂2
n2ρ̂

∼�
n · δ̂nρ̂∼�

n ). (64)442

Put all the above equations together (with the aid of notations(53), (54) and (61)),

δ̂nA
�
n = +hQA�

n
++zQA�

n

+ [−cρ̂∼�
n ∇ · (v̂ρ)∼�

n −+hQA�
n

+ λcc((ρ̂2)
∼�

n ∇ · v̂∼�
n )]
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+
[
−cρ̂∼�

n

∂

∂z
(ŵρ)∼�

n −+zQA�
n

− TSA�
n

+ λcc

(
(ρ̂2)∼�

n

∂ŵ∼�
n

∂z

)]
+ TSA�

n
+ g

ρ0
ŵ∼�
n ρ̂∼�

n + FA�
n ,z + FA�

n ,h, (65)

or, in a symbolic form,

Ȧ�
n = +hQA�

n
++zQA�

n
+ TA�

n ,∂hρ + TA�
n ,∂zρ + TSA�

n
+ b�n + FA�

n ,z + FA�
n ,h.

(66)

For a list of the meanings of these symbols, refer toAppendix D.443

7. Horizontal treatment444

As in Fourier analysis, the transform coefficients of MWT contain phase information;445

unlike Fourier analysis, the energies defined in Section3.2, which are essentially the trans-446

form coefficients squared, still contain phase information. This is fundamentally the same447

as what happens with the real-valued wavelet analysis, which has been well studied in the448

context of fluid dynamics (e.g.,Farge, 1992; Iima and Toh, 1995).449

In the presence of advection, the phase information problem leads to superimposed450

oscillations with high wavenumbers on the spatial distribution of obtained energetics. This451

may be understood easily, following an argument in the wavelet energetic analysis of shock452

waves byIima and Toh (1995). While in the sampling space3 the phase oscillation might not453

be obvious or even ignored because of the discrete nature in time, in the spatial directions454

it surfaces through a Galilean transformation. Look at the transform(7). The characteristic455

frequency isfc ∼ 2j2 cycles over the time duration. (Recall the signals are equally sampled456

on 2j2 points in time.) Now suppose there is a flow with constant speedu0. The oscillation457

in time withfc is then transformed to the horizontal plane with a wavelength on the order458

of u0/fc. Suppose the sampling interval is+t, the time step size for the dataset. Suppose459

further the spatial grid size is+x. In a numerical scheme explicit in advection (which is true460

for most numerical models), it must be smaller than or equal to+x/u0 to satisfy the CFL461

condition. So the oscillation has a wavenumberkc ∼ O( 1
+x

) or larger, asfc ∼ 1
+t

. Fig. 2a462

shows a typical example of the energetic term for the Iceland-Faeroe Frontal variability (cf.463

Robinson et al., 1996a,b; LR3). Notice how the substantial energetic information (Fig. 2b)464

is buried in the oscillations with short wavelengths. (The time sampling interval is 10+t465

here.)466

The phase oscillation as inFig. 2a is a technique problem deeply rooted in the nature of467

localized transforms. It must be eliminated to keep the energetic terms from being blurred. In468

our case, this is easy to be done. As the characteristic frequency is always 2j2, the highest for469

the signal under concern, the oscillation energy peaks at very high wavenumbers, far away470

from the substantial energy on the spectrum. Except for energetics on the sub-mesoscale471

3 Given a scale window, the MWT transform coefficients form a complete function space. We here refer to it as
a sampling space.
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Fig. 2. (a) The total transfer of APE from the large-scale window to the meso-scale window for the Iceland-Faeroe
Frontal variability at depth 300 m on August 21, 1993 (cf. LR3, andRobinson et al., 1996a,b). (b) The horizontally
filtered map (units: m2s−3).

window, a horizontal scaling synthesis with a proper upper scale level (lower enough to472

avoid the phase problem but higher enough to encompass all the substantial information)473

will give us all what we want. As a scaling synthesis is in fact a low-pass filtering which474

may also be loosely understood as a “local averaging”, we are taking a measure essentially475

similar to the time averaging approach ofIima and Toh (1995), except that we are here476

dealing with the horizontal rather than temporal direction.From now on, all the energetics477

should be understood to be“ locally averaged” with appropriate spatial window bounds,478

though for notational laconism, we will keep writing them in their original forms.479

One thing that should be pointed out regarding the MWT is that the phase information480

to be removed is always located around the highest wavenumbers on the energy spectrum.481

The reason is that in Eq.(7)a scaling basis at the highest scale levelj2 is used for transforms482

on all windows. This is in contrast to wavelet analyses, in which the larger the scale for483

the transform, the larger the scale for the phase oscillation (seeIima and Toh, 1995). The484

special structure of the MWT transform spectrum is very beneficial to the phase removal.485

Generally no aliasing will happen in separating the substantial processes from the phase486

oscillation.487

8. Connection to the classical formalism488

The MS-EVA can be easily connected to a classical energetics formalism, with the aid of489

the MWT properties presented in Section2.3, particularly the property of marginalization.490

For kinetic energy,Appendix Cshows that, when491

(1) j0 = 0, j1 = j2 (i.e., onlytwo-scale windowsare considered), and492

(2) aperiodic extension(� = 1) is employed,493

Eq.(50)for� = 0 and� = 1 are reduced respectively to the mean and eddy kinetic energy494

equations inHarrison and Robinson (1978)’s Reynolds-type energetics adapted for open495

ocean problems [see Eqs.(A.28) and (A.33)]. For available potential energy, the classical496
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formulation (2D only) in a statistical context gives the following mean and eddy equations497

(e.g.,Tennekes and Lumley, 1972)498

∂Amean

∂t
+ ∇ · (v̄Amean) = −cρ̄∇ · v′ρ′, (67)499

∂Aeddy

∂t
+ ∇ ·

(
v

1

2
cρ′2
)

= −cρ′v′ · ∇ρ̄, (68)500

whereAmean= 1
2cρ̄

2, Aeddy = 1
2c(ρ)′2. Eqs.(67) and (68)can be adapted for open ocean501

problems by modifying the time rates of change using the approach byHarrison and Robin-502

son (1978). Following the same way as that for KE, these modified equations can be derived503

directly from the MS-EVA APE Eq.(65)under the above two assumptions.504

It is of interest to notice that the multiscale energy Eqs.(50) and (65)appear in the same505

form for different windows. This is in contrast to the classical Reynolds-type formalism,506

where the eddy energetics are usually quite different in form from their mean counterparts.507

This difference disappears if the averaging and deviating operators in(67), (68), (A.28), and508

(A.33), are rewritten in terms of multiscale window transform. One might have been using509

the averaging-deviating approach for years without realizing that they actually belong to a510

kind of transform and synthesis.511

Consequently, the classical energetic formalism is equivalent to our MS-EVA under a512

two-window decomposition withj0 = 0 and� = 1. The latter can be viewed as a gen-513

eralization of the former for GFD processes occurring on arbitrary scale windows. The514

MS-EVA capabilities, however, are not limited to this. In(67) and (68), the rhs terms, or515

transfers as usually interpreted, sum to−c∇ · (ρ̄ρ′v′), which is generally not zero. That is516

to say, these “transfers” are not “perfect”. They still contain some information of transport517

processes. Our MS-EVA, in contrast, produces transfers on a different basis. The concept of518

perfect transfer defined through transfer–transport separation allows us to make physically519

consistent inference of the energy redistribution through scale windows. In this sense, the520

MS-EVA has an aspect which is distinctly different from the classical formalism.521

9. Interaction analysis522

Different from the classical energetics, a localized energy transfer involves not only523

interactions between scales, but also interactions between locations in the sampling space.524

We have already seen this in the definition of perfect transfer processes. A schematic is525

shown inFig. 3. The addition of sampling space interaction compounds greatly the transfer526

problem, as it mingles the inter-scale interactions with transfers within the same scale527

window, and as a result, useful information tends to be disguised, especially for those528

processes such as instabilities. We must single out this part in order to have the substantial529

dynamics up front.530

In the MS-EVA, transfer terms are expressed in the form of triple products. They are all531

like532

T (�,n) = R̂∼�

n (p̂q)∼�
n , forR, p, q ∈ V�,j2, (69)533
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Fig. 3. A schematic of the energy transfers toward a meso-scale process at locationn. Depicted are the transfers
from different time scales at the same location (vertical arrows), transfers from surrounding locations at the same
scale level (horizontal arrows), and transfers from different scales at different locations (dashed arrows).

a form which we callbasic transfer functionfor reference convenience. Using the repre-534

sentation(9), it may be expanded as535

T (�,n) =
∑
�1,�2

∑
n1,n2

Tr(n,�|n1,�1; n2,�2), (70)536

where537

Tr(n,�|n1,�1; n2,�2) = R̂∼�

n · [p̂∼�1
n1

q̂∼�2
n2

(
̂

φ
�,j2
n1 φ

�,j2
n2 )∼�

n ], (71)538

and the sums are over all the possible windows and locations.Tr(n,�|n1,�1; n2,�2) is a539

unit expressionof the interaction amongst the triad (n,w; n1, w1; n2, w2). It stands for the540

rate of energy transferred to (n,�) from the interaction of (n1,�1) and (n2,�2). We will541

refer to the pairs (n1, w1) and (n2, w2) as thegiving modes, and (n,w) thereceiving mode,542

a naming convention afterIima and Toh (1995).543

Theoretically, expansion of a basic transfer function in terms of unit expression allows one544

to trace back to all the sources that contributes to the transfer. Practically, however, it is not an545

efficient way because of the huge number of mode combinations and hence the huge number546

of triads. In our problem, such a detailed analysis is not at all necessary. If(70) is modified547

such that some terms are combined, the computational redundancy would be greatly reduced548

whereas the physical interpretation could be even clearer. We now present the modification.549

Look at the meso-scale window (� = 1) first. It is of particular importance because it550

mediates between the large scales and sub-mesoscales on a spectrum. For a fieldp, make551

the decomposition552

p = p̂∼1
n φ�,j2

n (t) + p∗1 = p∼0 + p̂∼1
n φ�,j2

n (t) + p∼1
∗1 + p∼2, (72)553

where554

p∗1 = p− p̂∼1
n φ�,j2

n (t) (73)555
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andp∼1
∗1 is the meso-scale part ofp∗1,556

p∼1
∗1 = p∼1 − p̂∼1

n φ�,j2
n =

∑
i∈Nj2

� ,i �=n

p̂∼1
i φ

�,j2
i . (74)557

The new interaction analysis concerns the relationship between scales and locations, instead558

of between triads. The advantage of this is that we do not have to resort to those triad559

modes, which may not have physical correspondence in the large-scale window, to make560

interpretation. Note not any ˆp∼1
n φ

�,j2
n can convincingly characterizep∼1(t) at locationn. But561

in this context, as the basis functionφ�,j2
n (t) we choose is a very localized one (localization562

order delimited, see L02), we expect the removal of ˆp∼1
n φ

�,j2
n will effectively (though not563

totally) eliminate fromp∼1 the contribution from locationn. This has been evidenced in the564

example of of a meridional velocity seriesv (Fig. 4), where atn = 384,v∼1
∗1 is only about 6%565

(|−0.0106
0.17 |) of thev∼1 in magnitude, while at other locationsv andv∼1

∗1 are almost the same566

(fluctuations negligible aroundn). Therefore, one may practically, albeit not perfectly, take567

p̂∼1
n φ

�,j2
n as the meso-scale part ofpwith contribution from locationnonly (corresponding to568

t = 2−j2n), andp∼1
∗1 the part from all locations other thann. Notep∼1

∗1 has ann-dependence.569

For notational clarity, it is suppressed henceforth.570

Likewise, for fieldq ∈ V�,j2, it can also be decomposed as571

q = q∼0 + q∼1 + q∼2 (75)572

q = q∼0 + q̂∼1
n φ�,j2

n + q∼1
∗1 + q∼2, (76)573

with interpretation analogous to that ofp∼1
∗1 for the starred term. The decompositions for

p andq yield an analysis of the basic transfer functionT (1, n) = R̂∼1
n · (p̂q)∼1

n into an
interaction matrix, which is shown inTable 1. In this matrix, L stands for large-scale
window and S for sub-mesoscale window (all locations). Mn is used to denote the meso-
scale contribution from locationn, while M∗ signifies the meso-scale contributionsother
than that location. Among these interactions, Mn–M∗ and M∗–M∗ contribute toT (1, n)
from the same scale window (meso-scale, without inter-scale transfers being involved. We
may sub-total all the resulting 16 terms into 5 more meaningful terms:

T 0→1
n = R̂∼1

n · [(p̂∼0q∼0)∼1
n + q̂∼1

n (
̂

p∼0φ
�,j2
n )∼1

n + (p̂∼0q∼1
∗1 )∼1

n

+ p̂∼1
n (

̂
φ
�,j2
n q∼0)∼1

n + (p̂∼1q∼0)∼1
n ]

= R̂∼1
n · [(p̂∼0q∼0)∼1

n + (p̂∼1q∼0)∼1
n + (p̂∼0q∼1)∼1

n ] (77)

T 2→1
n = R̂∼1

n · [p̂∼1
n (

̂
φ
�,j2
n q∼2)∼1

n + (p̂∼1
∗1 q

∼2)∼1
n + q̂∼1

n (
̂

p∼2φ
�,j2
n )∼1

n

+ (p̂∼2q∼1
∗1 )∼1

n + (p̂∼2q∼2)∼1
n ]

= R̂∼1
n · [(p̂∼1q∼2)∼1

n + (p̂∼2q∼2)∼1
n + (p̂∼2q∼1)∼1

n ] (78)
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Fig. 4. A typical time series ofv (in cm/s) from the Iceland-Faeroe Frontal variability simulation (point (35, 43,
2). Refer toFig. 2 for the location) and its derived series (cf. LR3). There are 2j2 = 1024 data points, and scale
windows are chosen such thatj0 = 0 andj1 = 4. The original seriesv and its large-scale reconstructionv∼0 are
shown in (a), and the meso-scale and sub-mesoscale are plotted in (b) and (c) respectively. Also plotted in (b) is
the “starred” series (dotted)v∼1

∗1 for locationn = 384. (d) is the close-up of (b) aroundn = 384. Apparently,v∼1
∗1

is at least one order smaller thanv∼1 in size at that point, while these two are practically the same at other points.
Locationn corresponds to a scaled timet = 2−j2n (here forecast day 8).

T 0⊕2→1
n = R̂∼1

n · [(p̂∼2q∼0)∼1
n + (p̂∼0q∼2)∼1

n ] (79)574

T 1→1
n→n = R̂∼1

n ·
[
p̂∼1
n q̂∼1

n (φ̂�,j2
n )2

∼1

n

]
(80)575

T 1→1
other→n = R̂∼1

n · [(p̂∼1q∼2
∗1 )∼1

n + q̂∼1
n (

̂
p∼2

∗1 φ
�,j2
n )∼1

n ]. (81)576

Table 1
Interaction matrix for basic transfer functionT (1, n) = R̂∼1

n · (p̂q)∼1
n

p∼0 p̂∼1
n φ

�,j2
n p∼1

∗1 p∼2

q∼0 L–L L–Mn L–M∗ L–S
q̂∼1
n φ

�,j2
n Mn–L Mn–Mn Mn–M∗ Mn–S

q∼1
∗1 M∗–L M∗–Mn M∗–M∗ M∗–S
q∼2 S–L S–Mn S–M∗ S–S
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If necessary,T 1→1
n→n andT 1→1

other→n may also be combined to one term. The result is denoted577

asT 1→1
n .578

The physical interpretations of above five terms are embedded in the naming convention579

of the superscripts, which reveals how energy is transferred to mode (1, n) from other scales.580

Specifically,T 0→1
n andT 2→1

n are transfer rates from windows 0 and 1, respectively, and581

T 0⊕2→1
n is the contribution from the window 0–window 2 interaction over the meso-scale582

range. The last two terms,T 1→1
n→n andT 1→1

other→n, sum up toT 1→1
n , which represents the part583

of transfer from the same window.584

Above are the interaction analysis forT (1, n). Using the same technique, one can obtain585

a similar analysis forT (0, n) andT (2, n). The results are supplied inAppendix B.586

What merits mentioning is that different analyses may be obtained by making different587

sub-grouping for Eq.(70). The rule of thumb here is to try to avoid those starred terms as588

in Eq.(81), which makes the major overhead in computation (in terms of either memory or589

CPU usage). In the above analyses, say the meso-scale analysis, if a whole perfect transfer590

is calculated, the sum of those terms in the form ofT 1→1
n→n will vanish by the definition of591

perfect transfer processes. This also implies that the sum of those transfer functions in the592

form of T 1→1
other→n will be equal to the sum of terms in the same form but with all the stars593

dropped. Hence in performing interaction analysis for a perfect transfer process, we may594

simply ignore the stars for the corresponding terms. But if it is an arbitrary transfer term595

which does not necessarily represent a perfect transfer process (e.g,TSA1
n
), the starred-term-596

caused heavy computational overhead will still be a problem.597

In practice, this overhead may be avoided under certain circumstances. Recall that we598

have built a highly localized scaling basis functionφ. For anyp ∈ V�,j2, it yields a function599

p(t)φ�,j2
n (t) with an effective support of the order of the grid size. The large- or meso-600

scale transform of this function is thence negligible, shouldj1 be smaller thanj2 by some601

considerable number (3 is enough). Only when it is in the sub-mesoscale window need602

we really compute the starred term. An example with a typical time series ofρ andu is603

plotted inFig. 5. Apparently, for the large-scale and meso-scale cases,ρ̂∼0
n (

̂
uφ

�,j2
n )∼0

n and604

ρ̂∼1
n (

̂
uφ

�,j2
n )∼1

n (red circles) are very small and hence (̂ρ∼0∗0u)∼0
n and (̂ρ∼1

∗1 u)∼1
n can be605

approximated by (̂ρ∼0u)∼0
n and (̂ρ∼1u)∼1

n , respectively. This approximation fails only in606

the sub-mesoscale case, where the corresponding two parts are of the same order.607

It is of interest to give an estimation of the relative importance of all these interaction608

terms obtained thus far. For the mesoscale transfer functionT (1, n), T 0⊕2→1
n is generally609

not significant (compared to other terms). This is because, on a spectrum, if two processes610

are far away from each other (as is the case for large scale and sub-mesoscale), they are611

usually separable and the interaction are accordingly very weak. Even if there exists some612

interaction, the spawned new processes generally stay in their original windows, seldom613

going into between. Apart fromT 0⊕2→1
n , all the others are of comparable sizes, though614

more often than notT 0→1
n dominates the rest (e.g.,Fig. 6b).615

For the large-scale window, things are a little different. This time it is termT 2→0
n that is616

not significant, with the same reason as above. But termT 1⊕2→0
n is in general not negligible.617

In this window, the dominant energy transfer is usually not from other scales, but from other618

locations at the same scale level. Mathematically this is to say,T 0→0
other→n usually dominates619



U
N

C
O

R
R

E
C

TE
D

 P
R

O
O

F

DYNAT 708 1–36

24 X. San Liang, A.R. Robinson / Dynamics of Atmospheres and Oceans xxx (2005) xxx–xxx

Fig. 5. An example showing relative importance of the decomposed terms fromTA�
n ,∂hρ

. Data source: same as that

in Fig. 4(zonal velocity only). Units: kg/m2s. Left: (̂ρ∼0
∗0 u)∼0

n (heavy solid line) and̂ρ∼0
n (̂uφ�,j2

n )∼0
n (circle); middle:

(ρ̂∼1
∗1 u)∼1

n (heavy solid line) and̂ρ∼1
n (̂uφ�,j2

n )∼1
n (circle); right: (̂ρ∼1

∗2 u)∼2
n (heavy solid line) and̂ρ∼2

n (̂uφ�,j2
n )∼2

n

(circle). Obviously, the (̂ρ∼w
∗w u)∼w

n in the decomposition (̂ρ∼wu)∼w
n = (ρ̂∼w

∗w u)∼w
n + ρ̂∼w

n (̂uφ�,j2
n )∼w

n can be well

approximated by (̂ρ∼wu)∼w
n for windowsw = 0,1.

the other terms. This is understandable since a large-scale feature results from interactions620

with modes covering a large range of location on the time series. If each location contributes621

even a little bit, the grand total could be huge. This fact is seen in the example inFig. 6a.622

By the same argument as above, within the sub-mesoscale window, the dominant term623

isT 1→2
n . ButT 0⊕1→2

n could be of some importance also. In comparison to these two,T 0→2
n624

andT 2→2
n = T 2→2

other→n + T 2→2
n→n are not significant.625

Fig. 6. An example showing the relative importance of analytical terms ofTK�
n ,h at 10 (time) locations. The data

source and parameter choice are the same as that ofFig. 4. Here the constant factor 2j2 has been multiplied. (a)
Analysis ofT

K0
n,h

(thick solid):T 1→0
K0
n,h

(thick dashed),T 2→0
K0
n,h

(solid), andT 0→0
K0
n,h

(dashed).T 1⊕2→0
K0
n,h

is also shown but

unnoticeable. (b) Analysis ofTK1
n,h

(thick solid):T 0→1
K1
n,h

(thick dashed),T 2→1
K1
n,h

(solid), andT 1→1
K1
n,h

(dashed).T 0⊕2→1
K1
n,h

is also shown but unnoticeable.
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We finish up this section with two observations ofFig. 6. (1) During the forecast days,626

TK0
n,h

and T 1→0
K0
n,h

are almost opposite in sign. That is to say, the transfer term without627

interaction analysis could be misleading in inter-scale energy transfer study. (2) The transfer628

rates change with time continuously. Analyses in a global time framework apparently do629

not work here, as application of a global analysis basically eliminates the time structure.630

This from one aspect demonstrates the advantage of MS-EVA in diagnosing real problems.631

10. Process classification and energetic scenario632

From the above analysis, energetic processes for a geophysical fluid system can be gen-633

erally classified into the following four categories: transport, perfect transfer, buoyancy con-634

version, and dissipation/diffusion. (The apparent source/sink in the multiscale APE equation635

is usually orders smaller than other terms and hence is negligible.) Dissipation/diffusion is636

beyond the scope of this paper. All the remaining categories belong to some “conservative”637

processes. Transport vanishes if integrated over a closed domain; perfect transfer summa-638

rizes to zero over scale windows followed by a marginalization in the sampling space;639

buoyancy conversion serves as a protocol between the two types of energy.640

The energetic scenario is now clear. If a system is viewed as defined in a space which641

includes physical space, phase space, and the space of energy type, then transport, transfer642

and buoyancy conversion are three mechanisms that redistribute energy through this super643

space. In a two-window decomposition, communication between the windows are achieved644

via T 0↔1
K andT 0↔1

A . (HereT stands for total transfer, and the superscript 0↔ 1 for either645

0 → 1 or 1→ 0.) the two types of energy are converted on each window; while transport646

brings every point to connection in the physical space. The whole scenario is like an energetic647

cycle, which is pictorially presented in the left part ofFig. 7 (with all the sub-mesoscale648

window-related arrows dropped), where arrows are utilized to indicate energy flows, and649

box and discs for the KE and APE, respectively.650

When the number of windows increase from 2 to 3, the scenario of energetic processes651

becomes much more complex. Besides the addition of a sub-mesoscale window, and the652

corresponding transports, conversions, and the window 1–2 and 0–2 transfers, another pro-653

cess appears. Schematized inFig. 7by dashed arrows, it is a transfer to a window from the654

interaction between another two windows. In traditional jargon, it is a “non-local” transfer,655

i.e., a transfer between two windows which are not adjacent in the phase space. We do not656

adopted this language as by “local” in this paper we refer to a physical space context. If the657

number of windows increases, these “nonlocal” transfers will compound the problem very658

much, and as a result, the complexity of the energetic scenario will increase exponentially.659

In a sense, this is one of the reasons why an eddy decomposition is preferred to a wave660

decomposition for multiscale energy study.661

11. Multiscale enstrophy equation662

Vorticity dynamics is an integral part of the MS-EVA. In this section we develop the663

laws for multiscale enstrophy evolution, which are derived from the vorticity equation.664
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Fig. 7. A schematic of the multiscale energetics for locationn. Arrows are used to indicate the energy flow, both
in the physical space and phase space, and labeled over these arrows are the processes associated with the flow.
The symbols adopted are the same as those listed inTable A.2, except that transport and transfer are the total
processes. Interaction analyses are indicated in the superscripts of theT-terms, whose interpretation is referred to
Section9. For clarity, transfers from the same window are not shown. From this diagram, we see that transports
(+QK�

n
, +QP�

n
, +QA�

n
, for windows� = 0,1,2) occur between different locations in physical space, while

transfers (theT-terms) mediate between scale windows in phase space. The connection between the two types of
energy is established through buoyancy conversion (positive if in the direction as indicated in the parenthesis),
which invokes neither scale–scale interactions nor location–location energy exchange.

The equation for vorticityζ = k · ∇ ∧ v is obtained by crossing the momentum Eq.(13)665

followed by a dot product withk,666

∂ζ

∂t
= k · ∇ ∧ w

∂v
∂z

− k · ∇ ∧ [(f + ζ)k ∧ v] + Fζ,z + Fζ,h, (82)667

whereFζ,z andFζ,h denote respectively the vertical and horizontal diffusion. Making use668

of the continuity Eq.(14), we get,669

∂ζ

∂t
= −∇ · (vζ) − ∂

∂z
(wζ)︸ ︷︷ ︸

(I)

−βv︸︷︷︸
(II)

+(f + ζ)
∂w

∂z︸ ︷︷ ︸
(III)

+k · ∂v
∂z

∧ ∇w︸ ︷︷ ︸
(IV)

+Fζ,z + Fζ,h︸ ︷︷ ︸
(V)

. (83)670

Hereβ = ∂f/∂y is a constant if aβ-plane is approximation is assumed. But in general, it671

does not need to be so. In Eq.(83), there are five mechanisms that contribute to the change of672

relative vorticityζ (e.g.,Spall, 1989). Apparently, term (I) is the advection ofζ by the flow,673

and term (V) the diffusion.β-Effect comes into play through term (II). It is the advection674
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of planetary vorticityf by meridional velocityv. Vortex tubes may stretch or shrink. The675

vorticity gain or loss due to stretching or shrinking is represented in term (III). Vortex tube676

may also tilt. Term (IV) results from such a mechanism.677

Enstrophy is the“energy” of vorticity, a positive measure of rotation. It is the square of678

vorticity: Z = 1
2ζ

2. Following the same practice for multiscale energies, the enstrophy on679

scale window� at time locationn is defined as (factor 2j2 omitted for brevity)680

Z�n = 1

2
(ζ̂∼�
n )2. (84)681

The evolution ofZ�n is derived from Eq.(83).682

As before, first discretize the only time derivative term in Eq.(83), ∂ζ/∂t, to δtζ. Take a
multiscale transform of the resulting equation and then multiply it byζ̂∼�

n . The left hand
side results in the evolution̂δnZ�n plus a correction term which is of the order+t2,+t being
the time spacing of the series. Merging the correction term into the horizontal diffusion, we
get an equation

Ż
�
n = −ζ̂∼�

n

[
∇ · (v̂ζ)∼�

n + ∂(ŵζ)∼�
n

∂z

]
︸ ︷︷ ︸

(AD)

−βζ̂∼�
n v̂∼�

n + f ζ̂∼�
n

(
∂̂w

∂z

)∼�

n

+ ζ̂∼�
n

(
ζ̂
∂w

∂z

)∼�

n

+ ζ̂∼�
n k ·

(
̂∂v

∂z
∧ ∇w

)∼�

n

+ FZ�n ,z + FZ�n ,h.

Again,FZ�n ,z andFZ�n ,h here are just symbolic representations of the vertical and horizontal683

diffusions. Following the practice in deriving the APE equation, the process represented by684

the advection-related terms (AD) can be decomposed into a sum of transport processes and685

transfer processes. Denote686

+hQZ�n = −∇ · [λcζ̂
∼�
n (v̂ζ)∼�

n ], (85)687

+zQZ�n = − ∂

∂z
[λcζ̂

∼�
n (ŵζ)∼�

n ] (86)688

then it is

AD = +hQZ�n ++zQZ�n + [−+hQZ�n − ζ̂∼�
n ∇ · (v̂ζ)∼�

n + λc(ζ̂2)∼�
n ∇ · v̂∼�

n ]

+
[
−+zQZ�n − ζ̂∼�

n

∂(ŵζ)∼�
n

∂z
+ λc(ζ̂2)∼�

n

∂ŵ∼�
n

∂z

]
≡ +hQZ�n ++zQZ�n + TZ�n ,∂hζ + TZ�n ,∂zζ,

where+hQZ�n and+zQZ�n represent the horizontal and vertical transports, andTZ�n ,∂hζ,689

TZ�n ,∂zζ the transfer rates for two distinct processes. It is easy to prove that both of these690

processes are perfect transfers. Note the multiscale continuity Eq.(35) has been used in691

obtaining the above form of decomposition. If necessary,+hQZ�n andTZ�n ,∂hζ may be692

further decomposed into contributions fromx andy directions, respectively.693
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The enstrophy equation now becomes, after some algebraic manipulation,

Ż
�
n = +hQZ�n ++zQZ�n + [−+hQZ�n − ζ̂∼�

n ∇ · (v̂ζ)∼�
n + λc(ζ̂2)∼�

n ∇ · v̂∼�
n ]

+
[
−+zQZ�n − ζ̂∼�

n

∂(ŵζ)∼�
n

∂z
+ λc(ζ̂2)∼�

n

∂ŵ∼�
n

∂z

]

−βζ̂∼�
n v̂∼�

n + f ζ̂∼�
n

∂ŵ∼�
n

∂z
+ ζ̂∼�

n

(
ζ̂
∂w

∂z

)∼�

n

+ ζ̂∼�
n k ·

(
̂∂v

∂z
∧ ∇w

)∼�

n

+ FZ�n ,z + FZ�n ,h. (87)

Or, symbolically,

Ż
�
n = +hQZ�n ++zQZ�n + TZ�n ,∂hζ + TZ�n ,∂zζ + SZ�n ,β + SZ�n ,f∇·v

+ TSZ�n ,ζ∇·v + TSZ�n ,tilt + FZ�n ,z + FZ�n ,h. (88)

The meanings of these symbols are tabulated inAppendix D.694

Each term of Eq.(88) has a corresponding physical interpretation. We have known695

that+hQZ�n and+zQZ�n are horizontal and vertical transports ofZ�n , respectively, and696

TZ�n ,∂hζ andTZ�n ,∂zζ transfer rates for two perfect transfer processes. Ifζ is horizontally697

and vertically a constant, thenTZ�n ,∂zζ andTZ�n ,∂hζ sum up to zero. We have also explained698

FZ�n ,z + FZ�n ,h represents the diffusion process. Among the rest terms,SZ�n ,β andSZ�n ,f∇·v699

stand for two sources/sinks ofZ due toβ-effect and vortex stretching, andTSZ�n ,ζ∇·v and700

TSZ�n ,tilt transfer as well as generate/destroy enstrophy. Processes cannot be well separated701

for them. In a 2D system, bothTSZ�n ,ζ∇·v andTSZ�n ,tilt vanish. As a result, the multiscale702

enstrophy equation is expected to be more useful for a plane flow than for a 3D flow.703

12. Summary and discussion704

A new methodology,multiscale energy and vorticity analysis, has been developed to705

investigate the inference of fundamental processes from real oceanic or atmospheric data for706

complex dynamics which are nonlinear, time and space intermittent, and involve multiscale707

interactions. Multiscale energy and enstrophy equations have been derived, interpreted, and708

compared to the energetics in classical formalism.709

The MS-EVA is based on a localized orthogonal complementary subspace decomposi-710

tion. It is formulated with the multiscale window transform, which is constructed to cope711

with the problem between localization and multiscale representation.4 The concept of scale712

and scale window is introduced, and energy and enstrophy evolutions are then formulated for713

the large-scale, meso-scale, and sub-mesoscale windows. The formulation is principally in714

time and hence time scale window, but with a treatment in the horizontal dimension. We em-715

phasize that, before physically interpreted,all the final energetics should be multiplied by a716

4 In the classical framework, multiscale energy does not have location identity of the dimension (time or space)
to which the multiscale decomposition is performed.
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constant factor2j2, and horizontally filtered with a 2D large-scale window synthesis. When717

the large-scale window boundj0 = 0, and a periodic extension scheme (� = 1) is adopted,718

the multiscale energy Eqs. [(50) and (65)] in a two-window decomposition are reduced to the719

mean and eddy energy equations in a classical framework. In other words, our MS-EVA is a720

generalization of the classical energetics formalism to scale windows for generic purposes.721

We have paid particular attention to the separation of transfers from the energetics re-722

sulting from nonlinearity. The separation is made possible by looking for a special type723

of process, the so-called perfect transfer. A perfect transfer process carries energy through724

scale windows, but does not generate nor destroy energy as a whole in the system.725

Perfect transfer terms can be further decomposed to unravel the complicated window-726

window interactions. This is the so-called interaction analysis. Given a transfer function727

T, an interaction analysis results in many interaction terms, which can be cast into the728

following four groups:729

T�1→�, T�2→�, T�1⊕�2→�, T�→�,730

each characteristic of an interaction process. Here superscripts� = 0,1,2 stand for large-,731

meso-, and sub-meso-scale windows, respectively, and�1 = (� + 1) mod 3,�2 = (� +732

2) mod 3. Explicit expressions for these functions are given in Eqs.(77)–(80).733

By collecting the MS-EVA terms, energetic processes have been classified into four cate-734

gories: transport, perfect transfer, buoyancy conversion, and dissipation/diffusion processes.735

Transport vanishes if integrated over a closed physical space; buoyancy conversion medi-736

ates between KE and APE on each individual window; while perfect transfer acts merely to737

redistribute energy between scale windows. The whole scenario is like a complex cycle, as738

shown inFig. 7. These “conservative mechanisms” can essentially make energy reach any-739

where in the super space formed with physical space, phase space, and space of energy type.740

It is not unreasonable to conjecture that, many patterns generated in geophysical fluid flows,741

complex as they might appear to be, could be a consequence of these energy redistributions.742

Our MS-EVA therefore contains energetic information which is fundamental to GFD743

dynamics. It is expected to provide a useful platform for understanding the complexity of744

the fluids in which all life on Earth occurs. Direct applications may be set up for investigating745

the processes of turbulence, wave-current and wave-wave interaction, and the stability for746

infinite dimensional systems. In the sequels to this paper, we will show how this MS-EVA747

can be adapted to study a more concrete GFD problem. An avenue to application will be748

established for localized stability analysis (LR2), and two benchmark stability models will749

be utilized for validation. In another study (LR3), this methodology will be applied to a real750

problem to demonstrate how process inference is made easy with otherwise a very intricate751

dynamical system.752

Acknowledgements753

We would like to thank Prof. Donald G.M. Anderson, Dr. Kenneth Brink, and Dr. Arthur754

J. Miller for important and interesting scientific discussions. X. San Liang also thanks755



U
N

C
O

R
R

E
C

TE
D

 P
R

O
O

F

DYNAT 708 1–36

30 X. San Liang, A.R. Robinson / Dynamics of Atmospheres and Oceans xxx (2005) xxx–xxx

Dr. Joseph Pedlosky for first raising the issue of transport–transfer separation, and thanks756

Prof. Brian Farrell, Prof. Yaneer Bar-Yam, Mr. Wayne Leslie, Dr. Patrick Haley, Dr. Pierre757

Lermusiaux, Dr. Carlos Lozano, Ms. Gioia Sweetland and Dr. James Wang for their generous758

help. This work was supported by the Office of Naval Research under Contracts N00014-759

95-1-0371, N00014-02-1-0989 and N00014-97-1-0239 to Harvard University.760

Appendix A. Correction to the time derivative term761

We have shown in Section5 that there exists a correction term in the formulas with time762

derivatives. For a kinetic equation, this formula is763

δ̂nKn︸ ︷︷ ︸
(K)

− (+t)2(δ̂2
n2v̂n · δ̂nv̂n)︸ ︷︷ ︸
(C)

, (A.1)764

where (C) is the correction term. Scale superscripts are omitted here since we do not want765

to limit the discussion to any particular scale window. Let’s first do some nondimensional766

analysis so that a comparison is possible. Scalev̂n with U, t with T, then767

Term (K) ∼ U2

T
, Term (C)∼ (+t)2

U

T 2 · U
T

= (+t)2
U2

T 3 .768

This enables us to evaluate the weight of (C) relative to (K):769

Term (C)

Term (K)
∼ (+t)2U2/T 3

U2/T
=
(
+t

T

)2

.770

Apparently, this ratio will become significant only whenT ∼ +t, i.e., when the time scale771

is of the time step size. In our MS-EVA formulation, the correction term (C) is hence not772

Fig. A.1. δ̂nKn (thick solid) and its correction term (dashed) for the large-scale (left), meso-scale (middle), and
sub-mesoscale (right) kinetic energy equations. Data source and parameter choice are the same as those ofFig. 4
(units in m2/s3; factor 2j2 not multiplied).
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significant for both large-scale and meso-scale equations.Fig. A.1confirms this conclusion.773

The correction (dashed line) is so small in either the left or middle plots that it is totally774

negligible. Only in the sub-mesoscale window can its effect be seen, which, as argued775

before, might be parameterized into the dissipation/diffusion.776

Appendix B. Interaction analysis for T (0, n) and T (2, n)777

Using the technique same as that forT (1, n) in Section9, we obtain a similar analysis778

for T (0, n):779

T (0, n) = R̂∼0
n · (p̂q)∼0

n = T 1→0
n + T 2→0

n + T 1⊕2→0
n + T 0→0

n→n + T 0→0
other→n, (A.2)780

where781

T 1→0
n = R̂∼0

n · [(p̂∼1q∼1)∼0
n + (p̂∼1q∼0)∼0

n + (p̂∼0q∼1)∼0
n ] (A.3)782

T 2→0
n = R̂∼0

n · [(p̂∼0q∼2)∼0
n + (p̂∼2q∼2)∼0

n + (p̂∼2q∼0)∼0
n ] (A.4)783

T 1⊕2→0
n = R̂∼0

n · [(p̂∼2q∼1)∼0
n + (p̂∼1q∼2)∼0

n ] (A.5)784

T 0→0
n→n = R̂∼0

n · [p̂∼0
n q̂∼0

n (φ̂�,j2
n )

2∼0

n ] (A.6)785

T 0→0
other→n = R̂∼0

n · [( ̂p∼0q∼0∗0)∼0
n + q̂∼0

n (
̂

p∼0∗0φ
�,j2
n )∼0

n ], (A.7)786

andT (2, n):787

T (2, n) = R̂∼2
n · (p̂q)∼2

n = T 0→2
n + T 1→2

n + T 0⊕1→2
n + T 2→2

n→n + T 2→2
other→n, (A.8)788

where789

T 0→2
n = R̂∼2

n · [(p̂∼0q∼0)∼2
n + (p̂∼2q∼0)∼2

n + (p̂∼0q∼2)∼2
n ] (A.9)790

T 1→2
n = R̂∼2

n · [(p̂∼1q∼2)∼2
n + (p̂∼1q∼1)∼2

n + (p̂∼2q∼1)∼2
n ] (A.10)791

T 0⊕1→2
n = R̂∼2

n · [(p̂∼0q∼1)∼2
n + (p̂∼1q∼0)∼2

n ] (A.11)792

T 2→2
n→n = R̂∼2

n · [p̂∼2
n q̂∼2

n (φ̂�,j2
n )

2∼2

n ] (A.12)793

T 2→2
other→n = R̂∼2

n · [(p̂∼2q∼2
∗2 )∼2

n + q̂∼2
n (

̂
p∼2

∗2 φ
�,j2
n )∼2

n ]. (A.13)794

In these analyses,p∗0 andp∗2 are defined as795

p∗0 = p− p̂∼0
n φ�,j2

n (t), (A.14)796

p∗2 = p− p̂∼2
n φ�,j2

n (t). (A.15)797

The physical meaning of the interaction terms is embedded in these mnemonic notations.798

In the superscripts, arrows signify the directions of energy transfer and the numbers 0–2799

represent the large-scale, meso-scale, and sub-mesoscale windows, respectively.
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Appendix C. Connection between the MS-EVA KE equations and the mean and800

eddy KE equations in a classical Reynolds formalism801

To connect our MS-EVA to the classical energetic formulation, rewrite Eq.(50) (dissi-
pation omitted) as

v̂∼�
n ·

(
∂̂v
∂t

)∼�

n

= v̂∼�
n ·

[
−∇ · (v̂ v)∼�

n − ∂

∂z
(ŵv)∼�

n

]
︸ ︷︷ ︸

(I )

+ +hQP�
n

++zQP�
n

− b�n︸ ︷︷ ︸
(II )

, (A.16)

We want to see what this equation reduces to ifj1 = j2 (that is to say, onlytwo-scale802

windowsare considered),j0 = 0, and aperiodic extensionis employed.803

First consider the large scale window� = 0. Letq be any field variable (u, v, w, orP).804

A two-scale window decomposition means805

q = q∼0 + q∼1. (A.17)806

With the choice of zeroj0 and periodic extension, we know from the MWT properties807

(see Section2.3) thatq∼0 is constant in time and is equal to ¯q or 2j2/2q̂∼0
n in magnitude,808

that is,809

q∼0 = q̄ = 2j2/2 q̂∼0
n , q∼1 = q − q̄ = q′. (A.18)810

Hence811

( ˆ̄q)∼0
n = (q̂∼0)∼0

n = q∼0 = 2−j2/2q̄, (A.19)812

(q̂′)∼0
n = (q̂∼1)∼0

n = 0. (A.20)813

Substitutingv andw for theq in (A.17), the velocity field is decomposed asv = v̄ + v′,814

andw = w̄+ w′. LetKmean= 1
2 v̄ · v̄. The equivalence between the large-scale transform815

and duration average allows an expression of the large-scale kinetic energyK0
n in terms of816

Kmean. In fact,817

K0
n = 2j2

(
1

2
v̂∼0
n · v̂∼0

n

)
= 1

2
v̄ · v̄ = Kmean. (A.21)818

Note here we have taken into account the multiplier 2j2. These facts are now used to simplify819

the term (I ) of Eq.(A.16). With the two-scale decomposition, the dyad (v v) after transform820

is expanded as821

(v̂ v)∼0
n = (̂̄v v̄)∼0

n + (̂̄v v′)∼0
n + (v̂′ v̄)∼0

n + (v̂′ v′)∼0
n (A.22)822

(v̂ v)∼0
n = v̄v̂∼0

n + (v̂′ v′)∼0
n . (A.23)823
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Likewise,824

(ŵv)∼0
n = w̄v̂∼0

n + (ŵ′v′)∼0
n . (A.24)825

These allow term (I ) to be written as

(I ) = v̂∼0
n ·

[
−∇ · (v̄ v̂∼0

n ) − ∂

∂z
(w̄v̂∼0

n )

]
+ v̂∼0

n ·
[
−∇ · (v̂′v′)∼0

n − ∂

∂z
(ŵ′v′)∼0

n

]
= 2−j2

{
−∇ · (v̄Kmean) − ∂

∂z
(w̄Kmean) + v̄ ·

[
−∇ · (v′v′) − ∂

∂z
(w′v′)

]}
= 2−j2

{
−∇ · (v̄Kmean) − ∂

∂z
(w̄Kmean) + v̄ · ∇3 · T

}
, (A.25)

where826

∇3 = i
∂

∂x
+ j

∂

∂y
+ k

∂

∂z
,827

and828

T =

 −(u′u′) −(u′v′) −(u′w′)
−(v′u′) −(v′v′) −(v′w′)
−(w′u′) −(w′v′) −(w′w′)

 . (A.26)829

For term (II ), it is equal to, in the present setting,830

(II ) = 2−j0

{
− 1

ρ0
∇ · (P̄ v̄) − 1

ρ0

∂

∂z
(P̄w̄) − g

ρ0
w̄ρ̄.

}
(A.27)831

Substitute (I ) and (II ) back to Eq.(A.16). Considering that the left hand side is now 2−j0v̄ ·(
∂v
∂t

)
, we have, with the common factor 2−j0 cancelled out,

v̄ ·
(
∂v
∂t

)
= −∇ · (v̄KL) − ∂

∂z
(w̄KL) − 1

ρ0
∇ · (P̄ v̄) − 1

ρ0

∂

∂z
(P̄w̄)

− g

ρ0
w̄ρ̄.+ v̄ · ∇3 · T. (A.28)

This is exactly whatHarrison and Robinson (1978)have obtained for the mean kinetic832

energy, withT the Reynolds stress tensor in their formulation.833

Above is about the large-scale energetics. For the meso-scale window (� = 1), things834

are more complicated. In order to make Eq.(A.16) comparable to the classical eddy KE835

equation, justj0 = 0 and periodic extension are not enough, as now there no longer exists836

for variablep a linear relation between ˆp∼1
n andp′. We have to marginalize(A.16) to the837

physical space to fulfill this mission. In this particular case, the marginalization equality
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(11) in Section2.3 is simply838

Mnp̂
∼1
n q̂∼1

n = p′q′, (A.29)839

since here the deviation operation (prime) and the meso-scale synthesis operator are iden-840

tical. Marginalization of(A.16) with � = 1 yields841

v′ ·
(
∂v
∂t

)′
= − v′ · ∇ · (vv)′︸ ︷︷ ︸

(I ′)

− v′ · ∂

∂z
(wv)′︸ ︷︷ ︸

(II ′)

− v′ · ∇
(
P ′

ρ0

)
︸ ︷︷ ︸

(III ′)

. (A.30)842

It is easy to show, as we did before,843

(III ′) = ∇ ·
(
v′P

′

ρ0

)
+ ∂

∂z

(
w′P

′

ρ0

)
+ g

ρ0
w′ρ′. (A.31)844

The other two terms sum up to845

(I ′) + (II ′) = ∇ ·
(
v
v′ · v′

2

)
+ ∂

∂z

(
w
v′ · v′

2

)
+ v′v′ : ∇v̄ + v′w′ · ∂v̄

∂z
. (A.32)846

Therefore,

v′ ·
(
∂v
∂t

)′
= −∇ ·

(
v
v′ · v′

2

)
− ∂

∂z

(
w
v′ · v′

2

)
− ∇ ·

(
v′P

′

ρ0

)

− ∂

∂z

(
w′P

′

ρ0

)
− g

ρ0
w′ρ′ − v′v′ : ∇v̄ − v′w′ · ∂v̄

∂z
. (A.33)

Again, this is exactly the eddy KE equation obtained byHarrison and Robinson (1978).847

Appendix D. Glossary848

Tables A.1–A.3.849

Table A.1
General symbols

A�
n Available potential energy on window� at time 2−j2n

j0, j1, j2 Upper bounds of scale level for the three scale windows

K�
n Kinetic energy on window� at time 2−j2n

V�,j2 Direct sum of the three scale windows.

� Window index (� = 0,1,2 for large-scale, meso-scale, and sub-mesoscale windows, respectively)

Z�n Enstrophy on window� at time 2−j2n

ẑ∼�
n Multiscale window transform of variablez

z∼� Multiscale window synthesis of variablez

z̄ Duration average of variablez

φ
�,j
n Periodized scaling basis function at levelj

ψ
�,j
n Periodized wavelet basis function at levelj
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Table A.2
Symbols for the multiscale energy equations (time 2−j2n, window�)

Kinetic energy (KE) Available potential energy (APE)

K̇�
n Time rate of change of KE Ȧ�

n Time rate of change of APE
+hQK�

n
Horizontal KE advective working
rate

+hQA�
n

Horizontal APE advective working rate

+zQK�
n

Vertical KE advective working
rate

+zQA�
n

Vertical APE advective working rate

TK�
n ,h Rate of KE transfer due to the hor-

izontal flow
TA�

n ,∂hρ
Rate of APE transfer due to the horizontal
gradient density

TK�
n ,z Rate of KE transfer due to the ver-

tical flow
TA�

n ,∂zρ Rate of APE transfer due to the vertical
gradient density

−b�n Rate of buoyancy conversion b�n Rate of inverse buoyancy conversion
+hQP�

n
Horizontal pressure working rate TSA�

n
Rate of an imperfect APE transfer due to
the stationary shear of the density profile

+zQP�
n

Vertical pressure working rate FA�
n ,h Horizontal diffusion

FK�
n ,z Vertical dissipation FA�

n ,z Vertical diffusion
FK�

n ,h Horizontal dissipation

Table A.3
Symbols for the multiscale enstrophy equation (time 2−j2n, window�)

Ż
�

n Time rate of change ofZ on window� at time 2−j2n

+hQZ�n Horizontal transport rate
+zQZ�n Vertical transport rate
TZ�n ,∂hζ

Rate of enstrophy transfer due to the horizontal variation ofζ

TZ�n ,∂zζ Rate of enstrophy transfer due to the vertical variation ofζ

SZ�n ,β β-Effect-caused source/sink
SZ�n ,f∇·v Source/sink of enstrophy due to horizontal divergence
TSZ�n ,ζ∇·v Rate ofZ transfer and generation due to rotation-divergence correlation
TSZ�n ,tilt Rate ofZ transfer and generation due to the vortex tube tilting
FZ�n ,h Horizontal diffusion rate
FZ�n ,z Vertical diffusion rate
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