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Abstra
tA novel lo
alized stability analysis is established in a uni�ed treatment for the study ofreal o
eani
 and atmospheri
 pro
esses, whi
h are in general highly nonlinear, and inter-mittent in spa
e and time. We �rst re-state the 
lassi
al de�nition using the Multi-S
aleEnergy and Vorti
ity Analysis (MS-EVA) developed in Liang and Robinson (2004a), andthen manipulate 
ertain global operators to a
hieve the temporal and spatial lo
alization.The key of spatial lo
alization is transfer-transport separation, whi
h is made pre
ise withthe 
on
ept of perfe
t transfer, while relaxation of marginalization leads to the lo
aliza-tion of time. In doing so the information of transfer lost in the averages is retrieved andan easy-to-use instability metri
 is obtained. The resulting metri
 is �eld-like (Eulerian),
on
eptually generalizing the 
lassi
al formalism, a bulk notion over the whole system. Inthis framework, an instability has a stru
ture, whi
h is of parti
ular use for open 
ow pro-
esses. We 
he
k the stru
ture of baro
lini
 instability with the ben
hmark Eady modelsolution, and the I
eland-Faeroe Frontal (IFF) intrusion, a highly lo
alized and nonlinearpro
ess o

urring frequently in the region between I
eland and Faeroe Islands. A 
learisolated baro
lini
 instability is identi�ed around the intrusion, whi
h is further found tobe 
hara
terized by the transition from a 
onve
tive instability to an absolute instability.We also 
he
k the 
onsisten
y of MS-EVA dynami
s with the barotropi
 Kuo model. Aremarkable observation is that a lo
al perturbation burst does not ne
essarily imply aninstability: the perturbation energy 
ould be transported from another pro
ess o

urringelsewhere. We �nd that our analysis yields a Kuo theorem-
onsistent mean-eddy intera
-tion, whi
h is not seen in a 
onventional Reynolds stress framework. Using the te
hniquesof marginalization and lo
alization, this work sets up an example for the generalization of
ertain geophysi
al 
uid dynami
s theories for more generi
 purposes.Keywords: Multi-S
ale Energy and Vorti
ity Analysis (MS-EVA); Lo
alized baro
lini
/barotropi
instability; Multis
ale window transform; Lo
alization; Conve
tive/Absolute instability
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1 Introdu
tionWe apply the Multi-S
ale Energy and Vorti
ity Analysis (MS-EVA) developed in the �rst partof this paper (Liang and Robinson, 2004a; LR1 hereafter) to formulate a lo
alized instabilityanalysis for pro
esses of �nite amplitude and with spatial and temporal intermitten
e. Thisformalism is then validated with three ben
hmark problems. In the sequel to this paper, Liangand Robinson (2004b; LR2 hereafter), it will be applied to the study of a real o
ean problem.Stability is an important 
on
ept for dynami
al systems and has wide appli
ations in geo-physi
al 
uid 
ows (e.g., Holton, 1992; Cushman-Rosin, 1994; Pedlosky, 1979). Like anyin�nite dimensional dynami
al pro
ess, GFD instabilities in nature are generally lo
alized inspa
e and time, in the sense that instabilities tend to o

ur episodi
ally and within limitedregions whi
h may have irregular geometries and 
ould be adve
ted around. In the 
lassi-
al framework, however, stability is a notion over the whole system to whi
h every lo
ationbelongs. It is diÆ
ult to believe that su
h a bulk treatment 
an have the highly lo
alizedpro
esses faithfully represented. This problem is not new. People have developed many ap-proximate approa
hes for 
ertain problems, whi
h generally 
an be put into two 
ategories:(1) Lagrangian; (2) Eulerian but linear. The former in
ludes the well-known Lyapunov ex-ponent te
hnique (e.g. Wiggins, 2003), and the par
el stability analysis in the 
ontext ofGFD resear
h whi
h has been utilized to investigate symmetri
 instability (see Holton, 1992,and referen
es therein); the latter is often with the WKB expansion, and 
an be found, forexample, in the study of absolutely and 
onve
tively unstable 
ows (e.g., Pierrehumbert andSwanson, 1995). Considering that a majority of GFD datasets are a
quired in Eulerian form,and that instability pro
esses are more often than not of �nite amplitude, it is desirable to havea more generi
 formalism to integrate together lo
alization and nonlinearity in an Eulerianframework.We use the MS-EVA introdu
ed in LR1 to establish the formalism. MS-EVA is based ona mathemati
al ma
hinery 
alled multis
ale window transform (MWT) whi
h is introdu
edin LR1, Se
tion 2, and in more detail in Liang (2002). Like the WKB expansion used in theprevious 
onve
tive/absolute instability analysis, MWT is lo
alized in nature; unlike WKB,2



the MS-EVA does not involve small perturbation approximation. The MWT-based MS-EVAis therefore expe
ted to serve our purpose well. Indeed, MS-EVA is 
losely tied to stability inthat stability/instability belongs to a kind of energy transfer pro
ess between s
ale windows.A s
ale window, or simply a window, is a subspa
e involving a range of s
ales (refer to LR1for a rigorous de�nition). In the 
lassi
al sense, stability analysis deals with the behavior ofperturbations to some equilibrium state of a system. This equilibrium state 
ould be a time-invariant solution, a limit 
y
le, et
. Either way it 
an be put into a more abstra
t 
lass { alarge-s
ale (time) window with a proper window bound. Along this route stability/instabilityis naturally generalized as the intera
tion between s
ale windows. We start from this pointto 
on
eptualize our problem, and form the 
riteria for the identi�
ation of barotropi
 andbaro
lini
 instabilities on a generi
 basis.Our strategy is to 
onne
t 
ertain MS-EVA terms to the 
lassi
al de�nition, and generalizeas above the 
lassi
al 
on
ept to establish our own formalism. We start o� with a linearde�nition equation, then move forward through two steps. The �rst step is nonlinearization.We re-state, in the linear limit, the 
lassi
al de�nition in MS-EVA language, and within thatlimit go to the nonlinear version. The resulting de�nition equation is now nonlinear but stillglobal. At this time we move to the se
ond step: lo
alization. We will show, in terms ofMWT and MS-EVA, what makes the de�nition global is redu
ed to two operators, a timemarginalization (
f. LR1) and a spatial averaging. Lo
alization is a
hieved through relaxingor freeing the equation from the 
onstraints of these operators. Based on the relaxed equationa nonlinear lo
alized instability analysis is then possible.This paper is organized as follows. Se
tions 2 and 3 are devoted to realize the above strat-egy. Instability 
riteria are then established and 
ompared to the existing Eulerian formalisms(Se
tion 4). In Se
tions 5.1 and 5.2, we validate the 
riteria with an Eady model (pure baro-
lini
 instability) and a highly lo
alized nonlinear Eady-like instability problem. Dynami
al
onsisten
y is 
he
ked with the known results, and 
apabilities are shown in treating non-linearity as well as temporal and spatial intermitten
e. We also validate the 
riteria with aKuo model with a distin
t basi
 
on�guration (Se
tion 5.3). We want to demonstrate throughthe distin
t dynami
s that our lo
alized instability analysis redu
es to but extends the 
on-3




ept of Reynolds stress and yields a mean-eddy stru
ture intera
tion 
onsistent with Kuo'sbarotropi
 instability theorem. This se
tion is followed by a brief des
ription of the energeti
s
enario of baro
lini
 and barotropi
 instabilities (Se
tion 6). The whole study is summarizedin Se
tion 7.2 MS-EVA re-statement of the 
lassi
al instability formalismIn this se
tion, we re-state the 
lassi
al instability problem using the MS-EVA language. Thisre-statement makes it possible for a dire
t generalization of the 
lassi
al formalism, whi
h wewill show in Se
tions 3 and 4.2.1 Classi
al linearized formalismIn the 
lassi
al formalism, the two important 
on
epts, baro
lini
 instability and barotropi
instability, 
an be de�ned in the 
ontext of the linearized growth equation of perturbationenergy Eeddy (the total of perturbation kineti
 energy and available potential energy) for afri
tionless and nondi�usive zonal jet stream over a basin 
 (Pedlosky, 1979; Holton, 1992;Cushman-Rosin, 1994):1�hEeddyi
�t = *� g2�20N2 v0�0����y+
 + ��u0v0��u�y � u0w0 ��u�z�
 � hBC�i
 + hBT �i
; (1)where h�i
 is an averaging over 
 
on�ned between two latitudes. The overbar stands for anensemble mean whi
h is pra
ti
ally repla
ed by a time average, and the prime for the departurefrom it. Other symbols are 
onventional (refer to the textbooks 
ited above). In this formalism,the two types of instabilities are distinguished by the 
ontributions of hBC�i
 and hBT �i
.For 
onvenien
e, we will loosely refer to them as baro
lini
 transfer and barotropi
 transfer,respe
tively.1In this equation, there is a term u0w0 ��u�z in BT � whi
h is not seen in typi
al textbooks be
ause we do notmake the quasi-geostrophi
 (QG) assumption here. In a primitive equation model, this term 
ould be signi�
antin 
omparison to u0v0 ��u�y (see Liang, 2002). 4



2.2 Eddy window and energeti
s on the eddy windowPhysi
ally, the right hand side of (1) is the eddy energy extra
ted against basi
 pro�les. Thetwo terms should represent some kind of energy transfers with 
ertain window de
ompositionin the MS-EVA framework. To see more 
learly this 
onne
tion, we take a dire
t sum of twosubspa
es (in the 
ontext of time), the meso-s
ale and sub-mesos
ale windows as introdu
edin LR1, to make an eddy window, and examine the energeti
s for this window.Consider an ideal 
uid 
ow. From LR1, the growths of kineti
 energy (K1n) and availablepotential energy (A1n) on the eddy window (denoted by supers
ript 1) at time step n aregoverned by _K1n = �QK1n +�QP 1n + TK1n � b1n; (2)_A1n = �QA1n + TA1n + b1n; (3)where the divergent form Q-terms represent transport pro
esses, and the T -termsTK1n = TK1n;h + TK1n;z= �bv�1n � r � d(v v)�1n +r � � d(v v)�1n � bv�1n ��bv�1n � ��z d(wv)�1n + ��z �bv�1n � d(wv)�1n � (4)TA1n = TA1n;�h� + TA1n;�z� + TSA1n= � g2�20N2 b��1n �r � d(�v)�1n + ��z d(w�)�1n �+ g2�20N2 �r � �b��1n d(�v)�1n �+ ��z �b��1n d(w�)�1n �� (5)In the equations, the symbol 
(�)�1n indi
ates an eddy window transform at time step n. Othernotations are de�ned in LR1, and Table 1.The T -terms in (2) and (3) represent energy transfers toward the eddy window. They areexpe
ted to be related to the hBC�i
 and hBT �i
 in Eq. (1). This is indeed true, as wehereafter prove.
5



2.3 Barotropi
 transferAs shown in LR1, Se
. 8, the 
onne
tion between the 
lassi
al energeti
s analysis and theMS-EVA is established through marginalization, whi
h is a spe
ial summation over the timesampling spa
e (see LR1, Se
tion 2.3, and Liang, 2002, Chapter 2, in more detail). Similarly,we need to perform marginalization here. We need parti
ularly to fo
us on the 
ase with alarge-s
ale window bound j0 = 0 and a periodi
 extension, where the large-s
ale and eddywindow syntheses redu
e to duration average and the departure from it. That is to say,q�0 = �q; q�1 = q0:This allows us to write the marginalization property simply asMnbp�1n bq�1n = p0q0; (6)where Mn stands for the marginalization over all time steps. To see how hBT �i
 is relatedto (2), marginalize TK1n :MnTK1n = Mn �TK1n;h + TK1n;z�= Mn ��bv�1n � r � d(v v)�1n � bv�1n � ��z d(wv)�1n ��QK1n�= �v0 � r � (v v)0 � v0 � ��z (w)0 + [other0℄: (7)The term [other0℄ is in a divergen
e form. It integrates to zero given the boundary 
onditions.So Z Z Z
MnTK1n dV = � Z Z Z
 "v0 � r � (v v)0 + v0 � ��z (w)0# dV= � Z Z Z
 u0v0 ��u�y dV � Z Z Z
 u0w0��u�z dV (8)with the ba
kground �eld �v = (�u(y; z); 0; 0). In the derivation the 
ontinuity equation hasbeen used and the triple perturbation terms have been dropped by linearization. This is tosay, hBT �i
 is equal to the marginalized total kineti
 energy transfer (linearized) from thebasi
 
ow to the eddy window, i.e.,DMnTK1n;h +MnTK1n;zE
 = ��u0v0 ��u�y � u0w0��u�z�
 = hBT �i
: (9)6



2.4 Baro
lini
 transferWe pro
eed to show that DTA1nE
 = hBC�i
. In Eq. (3), sin
e the transport integrates to zeroover the 
losed basin 
, we need only 
onsider the sum of�
b��1n r � d(�v)�1n � 
b��1n ��z d(w�)�1nover all the possible n's, where 
 = g2�20N2 , and � is the density anomaly but with the stationaryverti
al shear retained. By the marginalization equality, this isMnTA$n = �
�0r � (�v)0 � 
�0 ��z (w�)0:Integrating, the �rst part be
omes, with terms of higher order dropped (linearization),Z Z Z
�
�0r � (�v)0 dV = Z Z Z
 
���0�w0�z dV � Z Z Z
 
����y �0v0 dV:The se
ond part involves the z-derivative of ��, whi
h should be set to zero as we do not ex
ludethe stationary verti
al shear to follow the way how (1) is derived. It is therebyZ Z Z
�
�0 ��z (w�)0 dV = � Z Z Z 
�0 ��z (w0��) dV = � Z Z Z
 
���0�w0�z dV:These two integrals sum to � RRR
 
����y�0v0 dV; whi
h is none other than the BC� integratedover 
, i.e., MnDTA1n;�h� + TA1n;�z� + TSA1nE
 = hBC�i
: (10)2.5 Re-statement of the 
lassi
al formulationNow return to Eq. (1). The right hand side has been expressed in MS-EVA terminology. Onthe left hand side, Eeddy is a sum of Keddy = 12v0 � v0 and Aeddy = 12
�02. It is equal to themarginalization of K1n+A1n � E1n, a dire
t result of the marginalization property of multis
alewindow transform. With these, Eq. (1) now 
an be written asMnDÆ̂nE1nE
 = MnDTA1n + TK1nE
= MnDTA1n;�h� + TA1n;�z� + TSA1nE
 +MnDTK1n;h + TK1n;zE
: (11)7



Here the time derivative has been modi�ed as we did in deriving the multis
ale energeti
equations in LR1. Eq. (11) is open to the possibility of lo
alization, whi
h we will showhen
eforth.3 Toward the lo
alized formalismThe strategy to formulate the lo
alized instability analysis is to relax the 
onstraints exertedby the \global" operators, i.e., the marginalization and the domain averaging, applied onEq. (11). We will soon see, this is in general not trivial.3.1 Relaxation of the spatial averagingRelaxation of the angle averaging in Eq. (11) gives,Mn _E1n = Mn(TA1n + TK1n) +Mnr �Gn; (12)where _E1n � Æ̂n(A1n + K1n), and r � Gn is an arbitrary term in some divergen
e form. Thisis to say, the relaxation is unique up to a transport pro
ess. The key of spatial lo
alizationis therefore to have the transfer and transport separated. In LR1, we have shown that theseparation 
an be a
hieved pre
isely through introdu
ing the 
on
ept perfe
t transfer. Byde�nition a perfe
t transfer T$n is a pro
ess su
h that MnP$ T$n = 0. It is a redistributionof energy among s
ale windows whi
h does not generate nor destroy energy as a whole. Inarriving at (12), we need to assure that (TA1n + TK1n) is perfe
t.It should be pointed out that Eq. (11), and hen
e Eq. (1), are 
onditioned on the 
losedboundary 
on�guration. Relaxation of the spatial averaging basi
ally relieves this 
onstraintand hen
e allows for a more 
exible formulation.3.2 Relaxation of the time marginalizationIn order to drop the marginalization, we need to prove an equality whi
h relates linearizedtransfers to intera
tion analysis. 8



For �eld variables R, p and q, 
onsider a basi
 transfer fun
tionT ($;n) = bR�$n � d(pq)�$n :Here bR�$n represents the multis
ale window transform (MWT) ofR on window$ and lo
ationn. Considering only the eddy window, $ = 1, the intera
tion analysis of T (1; n) is, a

ordingto LR1 (Se
. 9), T (1; n) = T 0!1n + T 1!1n = T 0!1n + bR�1n � d(p�1q�1)�1n : (13)where 0! 1 and 1! 1 stand for the dire
tions of energy transfer (\mean to eddy" and \eddyto eddy", respe
tively), and q�1 is the eddy window synthesis of q. Re
all when j0 = 0 and aperiodi
 extension is adopted, q�0 = �q and q�1 = q0, and Mnbp�1n bq�1n = �p0q0. ApplyingMn toboth sides of (13), we getMnT (1; n) = MnT 0!1n +R0 � (p0q0)0= MnT 0!1n +R0 � �p0q0 � p0q0�= MnT 0!1n +R0p0q0� MnT 0!1n by linearization;or MnT 1!1n = 0; (14)where "=" is understood to be an equivalen
e relation up to linearization.The equality (14) allows for a relaxation of the marginalization on both sides of Eq. (12):_E1n = TA1n + TK1n +r �Gn +R1!1n : (15)That is to say the relaxation is unique up to an arbitrary eddy window-eddy window transferpro
ess R1!1n (
f. LR1, Se
. 9). A physi
ally 
onsistent 
hoi
e is that R1!1n = �(T 1!1A1n +T 1!1K1n ),whi
h yields _E1n = T 0!1A1n + T 0!1K1n +r �Gn: (16)This is the 
lassi
al instability de�nition with the global operator 
onstraints relaxed.9



4 Nonlinear lo
alized instability analysis4.1 Criterion for instability identi�
ationWe pro
eed to build our lo
alized instability analysis. This is a dire
t generalization of (1) from(16). Relaxed from marginalization and domain averaging, Eq. (16) is lo
alized, both in spa
eand in time. It veri�es (1) under the assumptions of linearity and time de
omposition withthe gravest s
ale level index (j0 = 0) and a periodi
 extension. The equation itself, however,does not have these limitations embedded. We de�ne the lo
alized instability analysis on thebasis of this equation, and it therefore 
an be used for problems with �nite perturbation andarbitrary window partitioning, i.e., the basi
 �eld is not ne
essarily an equilibrium, but 
ouldbe any time-varying pro
ess.A 
onspi
uous di�eren
e between (16) and (1), ex
ept the time and spa
e lo
alization, isthe relaxation \
onstant"- the additional transport. Be
ause of this term, the time rate of
hange of eddy energy alone is no longer the instability indi
ator, as �thEeddyi
 is in (1). Thisis to say, the disturban
e 
ould grow at a lo
ation even no instability o

urs. The ne
essaryenergy to fuel the growth 
ould be transported from other pla
es in the physi
al spa
e. Thisis an aspe
t whi
h is distin
tly di�erent from the 
lassi
al formalism, and is also la
ked in theprevious approximate lo
alized stability analysis in Eulerian framework.In this spirit we formulate our analysis. LetBT = T 0!1K1n = T 0!1K1n;h + T 0!1K1n;z;BC = T 0!1A1n = T 0!1A1n;�h� + T 0!1A1n;�z� + TS0!1A1n ;with BT and BC (lo
ation index n suppressed for 
larity) 
orresponding respe
tively to theirstarred 
ounterparts in (1). Here BT and BC are lo
alized both in spa
e and in time. We
laim that they are just the two metri
s for the lo
alized barotropi
 instability and baro-
lini
 instability. Considering that the 
on
ept of stability 
on
erns a subsystem within its
orrelation s
ale, we apply a lo
al spatial averaging on these two metri
s. We will still usethe notation h:i
 to write them as hBT i
 and hBCi
, but here h�i
 
arries with a di�erent10



meaning { it is an averaging over some appropriately 
hosen lo
al region 
. In this way aninstability analysis in a lo
alized sense is now possible. From Eq. (16),(1) A subsystem is unstable if hBT +BCi
 > 0 and vi
e versa;(2) For an unstable system, if hBT i
 > 0 and hBCi
 � 0, the instability the subsystemundergoes is 
alled barotropi
;(3) For an unstable subsystem, if hBCi
 is positive but hBT i
 is not, then the instabilityis 
alled baro
lini
;(4) If both hBT i
 and hBCi
 are positive, the subsystem must be undergoing a mixedinstability.It should be pointed out that the averaging h�i
 over an appropriate domain 
 is generallydiÆ
ult to realize. In a highly idealized model (as the ones we will 
onsider next), this might benot a diÆ
ult business; in real problems, however, an unambiguous 
hoi
e of 
 is usually notfeasible. We �x this problem with a lo
alized averaging, whi
h does not rely upon the 
hoi
eof 
 { in fa
t, no 
 is ne
essary at all. This is a
hieved by a large-s
ale window synthesis inthe spatial dire
tion with a proper window bound. Re
all in eliminating the phase os
illation(Se
. 3.5 of LR1), we have used the same te
hnique.4.2 Comparison with the previous formalismsOur formulation begins with the 
lassi
al de�nition, but the generalized lo
alized stabilityanalysis envisions stability problems di�erently as the 
lassi
al formalism [
f. (1)℄ does. Insteadof taking the whole system just as one obje
t, it quanti�es the energy transfer with a �eld-like fun
tion over a dis
retized form of that �eld. In other words, what 
hara
terizes theinstability is a temporal-spatial stru
ture, rather than a norm|a single positive value|as inthe 
lassi
al formalism. One 
an tell from the stru
ture whether there is and where there is aninstability without referen
ing the boundaries of the problem, and is hen
e of parti
ular usefor open 
ow problems. The widely studied 
onve
tive instability and absolute instability (see11



Pierrehumbert and Swanson and referen
es therein), for example, are naturally represented inthis framework. They 
an be distinguished simply by 
he
king the mobility of the hotspotswith the 
al
ulated BC + BT maps. (Refer to the highly lo
alized Eady-like instabilityproblem in Se
tion 5.2.) Apparently, our formalism is a generalization of the 
lassi
al 
on
eptof stability with mu
h 
exibility, and is hen
e 
apable of 
oping with more realisti
 GFDproblems.Our formulation also di�ers from the previous lo
alized Eulerian formalism, whi
h relies onthe approximation of small perturbation and, in most 
ases, a slowly and regularly varying(e.g., sinusoidal) ba
kground �eld. Our analysis is based on numeri
al results or experimentaldata, whi
h 
an be made free of any approximation. The basi
 �eld 
ould be of arbitraryshape, and the perturbation 
ould be of �nite amplitude. The 
apability of dealing withhighly lo
alized and �nite amplitude events will be eviden
ed in the next se
tion.Besides the above, a fundamental point whi
h is distin
tly di�erent from all the previousformalisms lies at the transport-transfer separation performed in the formulation. The di�er-en
e may be illustrated through making 
onta
ts with Reynolds stress, a 
on
ept whi
h haslong been used to interpret the intera
tion between mean and eddy stru
tures. It has been a
onvention to 
al
ulate the energy extra
ted by Reynolds stress against the basi
 pro�le, andtake it as the indi
ator of instability [refer to the se
ond term in Eq. (1)℄. In the 
ase of abasi
 
ow (�u; 0), for example, people usually 
al
ulate the quantity �(v0u0) �r�u (
f. Tennekesand Lumley, 1972; Pedlosky, 1979; Harrison and Robinson, 1979). In our formalism, when thespe
ial de
omposition (j0 = 0, periodi
 extension) is 
hosen, the BT -related transfer for thissystem is redu
ed to, 12 h�ur � (v0u0)� (v0u0) � r�ui ; (17)following the derivation of LR1, Se
. 8. Note the se
ond term in the bra
ket is just theReynolds stress 
ontribution, but as shown in LR1, this term alone does not 
onserve energyover s
ale windows (i.e., the transfer expressed this way is not perfe
t in our language). Term�ur � (v0u0), together with the fa
tor 12 , should be in
luded to ensure this 
onservation. Theaddition of this term makes the transfer me
hanism quite di�erent from that of �(v0u0) � r�u12



alone. Later on in Se
tion 5.3.2 (
f. Figs. 8 and 9), it will be 
lear that Eq. (17) faithfullyrepresents the mean-eddy stru
ture intera
tion.A dire
t 
onsequen
e of the transport-transfer separation is that growth of perturbationenergy does not ne
essarily mean instability. This is remarkable as it has been 
onventionalto read instability by looking at the perturbation bursts from simulations. Think about adisturban
e at some lo
ation: It may grow even without invoking any instability, as the energyneeded to fuel its growth 
ould be transported from surrounding regions. This is a fundamentalproperty of in�nite dimensional systems whi
h is la
ked in �nite dynami
al systems. We willsee later in the validations that this is generi
 in GFD 
ows, and our formalism has it naturallyrepresented.5 ValidationsIn this se
tion, the ben
hmark Eady model and a highly lo
alized nonlinear Eady-like problemare exploited to verify our analysis' 
apability of handling baro
lini
ity, nonlinearity, andtemporal and spatial intermitten
e. A barotropi
 model with a distin
t 
on�guration is alsoused to 
he
k the dynami
al 
onsisten
y with Kuo's theorems on barotropi
 instability (Kuo,1973). We want to demonstrate through this model that our analysis is able to yield a faithfulmean-eddy stru
ture intera
tion whi
h is not seen with previous formalisms.5.1 Consisten
y with the Eady modelThe Eady model is among one of the most extensively studied examples of linear stability.Introdu
ed by Eady (1949) in an elegantly simple form, it has sin
e be
ome a ben
hmark forbaro
lini
 instability studies. In the following, we use an unstable mode to verify that hBCi
is positive, and hBT i
 = 0; and a stable mode to verify that both hBCi
 and hBT i
 arevanish.Appendix A gives a summary of the Eady solution. Based on it, a stable mode and anunstable mode are sele
ted to generate two datasets for our purpose. The numbers and other13



details are referred to the appendix. We here only need a qualitative des
ription.For the unstable mode, both BC and BT vary in z and os
illate in x. Their horizontalos
illations, however, are fundamentally di�erent. A plot of these transfer rates as fun
tionsof x for the mid-depth (450 m) is shown in Fig. 1. From it we see that BC a
tually does notos
illate around the zero. It favors positive values, in 
ontrast to BT , whi
h has negative andpositive values well balan
ed. If averaged over a wavelength, there is a net gain in BC, whileBT vanishes. This trend holds for all the levels throughout the water 
olumn. If we use h�ixyto indi
ate horizontal averaging (over integer wavelengths), then hBC +BT ixy > 0. By the
riteria established in Se
tion 4, the system is dynami
ally unstable. Moreover, hBCixy > 0and hBT ixy = 0, implying that the instability is purely baro
lini
, exa
tly as we expe
t.We extend the validation to the stable and neutrally stable datasets. The energeti
 patterns(�gures not shown) are fairly symmetri
, and the unstable s
enario des
ribed before is notseen. Both BT and BC average to nil in these 
ases.A fundamental aspe
t of our lo
alized stability analysis whi
h is distin
tly di�erent fromits 
lassi
al 
ounterpart is that our stability/instability is not measured by a single norm overthe domain and duration under 
on
ern; it generally has a �eld or spatio-temporal stru
ture.For the unstable Eady mode, hBCi
 is distributed uniformly in z (Fig. 2a), although in this
ase the horizontal 
ow in
reases with height (
f. App. A). This makes sense, as one mighthave intuitively expe
ted, 
onsidering the symmetri
 model 
on�guration in z. The uniformBC is 
ontrasted by the time rate of 
hange of total eddy energy, _E1n, whi
h maximizes at thetwo boundaries (Fig. 2b). As it has been 
onventional to 
onne
t the growth of perturbationenergy to instability, the dis
repan
y between BC and _E1n is remarkable { The eddy energygrowth might not be an appropriate indi
ator of instability. In Se
tion 5.3 we will see a moredramati
 example where energy transfer and time 
hange of eddy energy 
ould be qualitativelydi�erent.
14



5.2 Validation and exempli�
ation with a lo
alized nonlinear Eady-like instability prob-lemThe strength of our analysis lies in the study of highly lo
alized and nonlinear pro
esses. Aswe will show below, the meandering intrusion of the I
eland-Faeroe Front (IFF) is an idealproblem to demonstrate this strength.The IFF is an o
eani
 front a
ross the strait between I
eland and Faeroe Islands (Fig. 3).It forms a boundary separating the North Atlanti
 waters from the Ar
ti
 waters. In theAugust of 1993, an unpre
edented dataset was obtained whi
h 
aptures the pro
esses towardthe formation of a highly lo
alized meandering intrusion, as shown in Fig. 3 in the insertedsatellite pi
ture of sea surfa
e temperature (SST) (Robinson et al., 1996). In this se
tion, webrie
y present part of the results relevant to this validation. For the whole story, the readeris referred to LR2.The meandering intrusion is found to be asso
iated with a lo
alized nonlinear Eady-likebaro
lini
 instability. Firstly, the intrusion is highly lo
alized in spa
e and time. On the SSTimage of August 22, 1993, it appears within a limited region in the middle of the model domain(Fig. 3). In the time dire
tion, the intrusion o

urred on an interval of approximately 2.6 days(see LR2; also 
f. Fig. 4), with its geometry varying and the meandering 
enter moving (�guresnot shown). Se
ondly, the intrusion is nonlinear. It amplitude of variation is bounded in spa
eand time, whi
h is obvious both on the satellite image (Fig. 3) and in the time series (Fig. 4).Besides, the intrusion is eviden
ed with a baro
lini
 instability (e.g., Miller et al., 1995). Theperturbation verti
al velo
ity and density anomaly have been 
omputed and shown to bealigned in a 
ounter-tilting pattern on their respe
tive se
tional distributions (LR2, Fig. 12),reminding us of the unstable Eady model solution.The baro
lini
ity, nonlinearity, and lo
alization makes the IFF an ideal testbed for ouranalysis. For this problem, it is expe
ted to generate a lo
ally positive BC and a negligibleBT . This is indeed the 
ase, as demonstrated in LR2. As an example, we 
ompute thesequen
e of 300-m BC.2 The input time series, whi
h are trun
ated at day 21.3, are uniformly2The depth and time steps are 
hosen the same as that in Fig. 9 of LR2. The result is similar to but a little15



sampled at 28 = 256 time steps (
ompared to 1024 steps in LR2). The resulting BC sequen
eis 
ontoured in Fig. 5. Obviously, there is a 
lear solitary positive regime around the 
enterduring the intrusion event, while in other subregions it is virtually zero; in 
omparison BTis one order smaller (�gure not shown). A

ording to the identi�
ation 
riteria, a baro
lini
instability is taking pla
e here.If one observes more 
losely, the baro
lini
 instability has a distin
t spatial-temporal stru
-ture. The hotspot does not stand still. It originally resides near the western boundary, thenmoves into the interior, where it halts and ampli�es, and diminishes to zero by day 9 (August23), just after the front intrudes. That is to say, the instability originally appears in the west.Disturban
es are introdu
ed eastward into the domain along the front, in a form of spatialgrowing mode. This is a 
onve
tive instability. After day 5 (August 19), the disturban
es be-
ome strong enough to 
ountera
t the propagation. Correspondingly the pro
ess is swit
hedinto a time growing mode, i.e., an absolute instability, leading to the meandering intrusion.The above BC evolution pattern and its 
lear physi
s 
onne
tion demonstrate that, whens
ale window bounds 
an be identi�ed, things are made easy and straightforward with ourlo
alized instability theory in dealing with 
ertain 
lass of dynami
s inferen
e problems. The
onve
tive/absolute instability, for example, would be otherwise diÆ
ult to study in the 
on-text of �nite amplitude. Even regardless of nonlinearity, one may noti
e that it is not easy forthe previous linear lo
alized Eulerian instability theory to apply here be
ause of the irregularba
kground �eld. For example, the large-s
ale temperature series in Fig. 4a (dashed line) isnot a straight line, nor a sinusoidal 
urve. Our framework admits arbitrary ba
kground shape,and hen
e works for generi
 purposes.5.3 Validation with a barotropi
 stability modelWe still have one more 
riterion to validate: a system with a positive averaged BT and a zero(or negative) BC is barotropi
ally unstable. In this se
tion, we use Kuo's model (Kuo, 1949,di�erent from the latter, as we are using the updated 
odes of MS-EVA whi
h has been optimized sin
e thepubli
ation of LR2. 16



1973) to 
arry out this validation.5.3.1 The modelConsider a barotropi
 (BC is hen
e zero) 
osine zonal jet�u(y) = �umax 
os2 ��2 yL� (18)
hanneled between y = �L (see Fig. 6a). It has an ambient potential vorti
ity gradient(Fig. 6b) �qy = ��uyy = � �22L2 �umax 
os �yL ; (19)whi
h vanishes at y = �L2 , meeting the ne
essary 
ondition for barotropi
 instability byRayleigh's theorem.The model result is summarized in Appendix B. We 
hoose two parti
ular modes to buildthe datasets for our validation. For the stable mode, the solution shows on the x-y domaina pattern symmetri
 about x = 0 and y = 0, while for the unstable mode, this symmetrybreaks. An snapshot of the unstable perturbation velo
ity u0 and v0 is shown in Fig. 7, wherea 
onspi
uous feature is the kinky variation of u0 with y (Fig. 7a). We will see soon that thesekinks make the Kuo model a good testbed for our lo
alized stability analysis.5.3.2 ValidationA

ording to Se
tion 4, the barotropi
 instability indi
ator BT should average to a positivenumber for the unstable mode, and zero for the stable mode. This is true with the datasetsgenerated above. The 
lassi
al result is thereby re
overed.As BC in the Eady model 
ase, here BT also displays some spatial variation whi
h is notseen in a 
lassi
al framework. We are parti
ularly interested in its variation in y be
ause ofthe meridionally stru
tured basi
 
on�guration. Fig. 8a shows the x-averaged BT as fun
tionof y, where we see a bell shape of positive quantity in the middle. A 
onspi
uous feature is17



that there are two sharp peaks with negative values at y = �0:53L. That is to say, the 
owis lo
ally stable around those two points, even though as a whole the system is unstable!The striking inverse transfer 
orresponds pre
isely in lo
ation to the kinky distribution ofu0 in Fig. 7. To see why there should be su
h a phenomenon, re
all that for a barotropi
instability to exist, it requires not only that a basi
 potential vorti
ity gradient �qy 
hange signthrough y 2 [�L;L℄, but also that (�u � 
r) (
r the mode phase speed) and �qy be positively
orrelated over the same domain (Kuo's theorem). (See Kuo, 1973, pp. 277-279.) Althoughthis positive 
orrelation requirement is stated in an integral form, lo
ally (in y) it may applywherever the system is more or less meridionally isolated. This is to say, the sign of theprodu
t (�u� 
r)� �qy may be pivotal to the instability, and hen
e the zero points of �u� 
r and�qy are 
riti
al to the dynami
s. In this 
hosen mode, 
r = 0:4504�umax, thus�u(y)� 
r = 0 =) y = �0:53L (20)�qy = ��uyy = 0 =) y = �0:50L: (21)These 
riti
al y's divide the 
ow into �ve regimes, as sket
hed in Fig. 6
. In the middle regime(hat
hed), both �qy and �u � 
r are positive, so their produ
t is also positive. The regimes atthe two ends, with both �qy and �u� 
r being negative, also have a positive produ
t �qy(�u� 
r).These polar regimes and the interior regime are separated near y = �0:5L by two narrowstrips (with a width of only 0:03L) where �qy(�u � 
r) < 0, and just be
ause of the oppositesign of �qy(�u � 
r), the dynami
s in the strips 
ould be 
ompletely di�erent from the interiorregime. In this sense, our lo
alized stability theory yields an instability stru
ture 
onsistentwith the known dynami
s.The stable transfer embedded in the unstable �eld is important, as it provides the only feed-ba
k admissible in this model. If 
omputed with a higher resolution, these inverse transferpeaks do not appear impulse-like. They a
tually have some y stru
tures. As shown in Fig. 8b,the peaks do not really span only the 
riti
al bands (0:5L to 0:53L and �0:53L to 0:5L).Rather, there is a tail extending beyond the �0:53L limits. This is in agreement with theabove 
onje
ture, as what Kuo's theorem states is in the form of an integral with respe
t toy from �L to L, rather than a lo
al one. 18



It has long been a 
onvention to use the 
on
ept of Reynolds stress to interpret the mean-eddy intera
tions in a 
ow. We 
al
ulate the energy extra
ted by Reynolds stress againstthe basi
 pro�le, D�u0v0 ��u�yEx, and plot it in Fig. 9. Observe that it does not 
orrelate well,as hBT ix in Fig. 8 does, to the distin
t sharp 
on�guration (Fig. 6
) demar
ated by theba
kground vorti
ity gradient and phase speed. Parti
ularly, it vanishes in the middle, whilepredi
ting maximal positive transfer, or most unstable 
ow, at �L2 (�50 km in the plot),where Kuo's se
ond ne
essary 
ondition for instability is not met. This is in 
ontrast to thepattern of hBT ix in Fig. 8, whi
h agrees well with Kuo's theorem. We are pleased to see thatour analysis yields a dynami
ally 
onsistent mean-eddy intera
tion whi
h is not observed inthe Reynolds stress framework.It is also a 
onvention to relate instability to perturbation burst. In general, however,perturbation growth does not seem to be an appropriate indi
ator. Plotted in Fig. 10 is thex-averaged time rate of 
hange of eddy kineti
 energy. Apparently, _K1n does not 
orrelateto BT well. Eddy energy grows everywhere through the latitudes, la
king a 
riti
al negativeband as in the BT plot. This validation shows, inferen
e of instability by simply looking atthe perturbation from a simulation should be used with 
aution.6 The aftermath of instabilitiesThe pro
ess after a system loses its instability is of interest in many problems. This se
tionpresents the energeti
 s
enarios of a baro
lini
 instability and a barotropi
 instability with theunstable Eady and Kuo modes.6.1 Eady modeIn an unstable Eady mode, both the density perturbation and velo
ity perturbation inten-sify toward the two verti
al boundaries (e.g., Holton, 1992). The eddy energy distribution inFigs. 11a and b show this trend. A natural question is how this stru
ture arises. We plotin Figs. 11
 and d two MS-EVA terms: eddy-s
ale buoyan
y 
onversion 
b1n�xy and verti
al19



pressure working rate D�zQP 1nExy. The negative 
b1n�xy implies a steady 
onversion of eddyAPE to eddy KE, whi
h is 
arried away by the verti
al pressure work be
ause of the 
orre-lation between 
b1n�xy and D�zQP 1nExy. The energeti
 s
enario is now 
lear: Originally, thereis no perturbation energy present and both 
A1n�xy and 
K1n�xy are zero. When a baro
lini
instability o

urs, a part of potential energy is released from the large-s
ale reservoir, dire
t-ing toward the eddy window of APE. This release is a
hieved through the transfer pro
essrepresented by hBCixy, whi
h is uniformly distributed through the water 
olumn. Due tothis transfer, the eddy APE is in
reased a

ordingly. But the in
rease is di�erent level bylevel, as there exists a sink for 
A1n�xy, the buoyan
y 
onversion, whi
h is minimal at the twoboundaries and maximal in the middle. The buoyan
y 
onversion 
arries the perturbationpotential energy over the APE-KE bridge to a
tivate the eddy motion. The 
onverted energywould be piled up at the mid-depths, if not for the verti
al pressure work D�zQP 1nExy. Inresponse D�zQP 1nExy ushers the 
onverted eddy energy immediately upward and downward,as that in the QG-EVA s
enario by Pinardi and Robinson (1986). The result of the pro
essis simple. It ends up with two dumbbell-shape verti
al pro�les, for both the eddy availablepotential energy and kineti
 energy (Figs. 11a,b). The whole pro
ess is pi
torially presentedin Fig. 12. The resulting verti
al stru
ture for either 
A1n�xy or 
K1n�xy implies that, whenthe instability halts, all the disturban
es, either in horizontal velo
ity or in density, will betrapped near the two verti
al boundaries, a pattern 
onsistent with the known results. Thisis the general energeti
 s
enario of Eady instability, whi
h is some sense gives a validation ofthe MS-EVA.6.2 Kuo modeA remarkable feature of the unstable Kuo model is the negative transfer around the 
riti
allatitudes y = �0:5L. This transfer is balan
ed by D�yQK1nEx, the meridional transportwhi
h is highly 
orrelated to BT through the latitudes ex
ept for the opposite sign (�gurenot shown). Referring to Fig. 8, this 
orrelation exhibits a 
lear energeti
 s
enario for theKuo model barotropi
 instability. The 
artoon of Fig. 13 summarizes this s
enario. The two20



narrow hat
hed regimes, where (�u � 
r)�qy < 0, form the two \walls" of a well whi
h limitsthe energeti
 a
tivities. Before the system gets perturbed, K1n (and hen
e 
K1n�x) is uniformlyzero. When an instability sets up, a part of energy is transferred from the large-s
ale windowto feed the growth. The transfer takes pla
e only in the well, and the transferred energy due tothis parietal pro
ess is transported from the 
enter toward its two wings until it hits the wallswhere the poleward transportation is almost halted (a very small part of transport still existsand that makes the K1n in
rease, as shown in Fig. 10). An inverse transfer then brings thetransported energy ba
k to the large-s
ale window, e�e
tively barring the perturbation fromgoing further southward and northward. The �nal result is an equilibrium with a bell-shapedistribution of eddy energy whi
h is maximized at y = 0 and vanishes at the northern andsouthern ends.It is worthwhile to investigate the role played by the inverse transfer near the 
riti
al bands(the hat
hed regions in Fig. 13). Theoreti
ally this is not a question answerable as no feedba
kis permissible to the ba
kground �eld in a linearized model. But one thing is for 
ertain fromthis transfer s
enario: While the basi
 jet loses energy at the 
ore, it gains energy at its wings.This implies a broadened jet after a barotropi
 instability, a result in agreement with whathas been predi
ted with analyti
al arguments (see the textbooks 
ited above).7 Summary and 
on
lusionsWe have developed a lo
alized instability analysis to investigate real o
eani
 and atmospheri
pro
esses whi
h are in nature �nite in amplitude and intermittent in spa
e and time. Cri-teria have been established and validated for the identi�
ation of barotropi
 and baro
lini
instabilities from rather generi
 and 
omplex GFD 
ows. In the validation, a frontal me-andering intrusion has been diagnosed as a highly lo
alized nonlinear Eady-like baro
lini
instability whi
h appears as a spatial growing mode (
onve
tive instability) then lo
ked into atemporal growing mode (absolute instability). We also found that a lo
al perturbation burstdoes not ne
essarily imply a lo
al instability (the perturbation energy 
ould be adve
ted fromother pro
esses o

urring elsewhere), and that our 
on
ept of perfe
t transfer gives a faithful21



representation of the physi
s underlying mean-eddy intera
tions.In terms of MS-EVA, 
hara
terizing the stability of a system are two Eulerian variables,BC = (T 0!1A1n;�h� + T 0!1A1n;�z�) + TA0!1A1n , and BT = (T 0!1K1n;h + T 0!1K1n;z), whi
h have a �eld stru
ture,and are then
e representative of highly lo
alized pro
esses. Given a 
ow, it is lo
ally unstablewhen the lo
al average of BC+BT is positive, and vi
e versa. The type of instability is furtherdistinguished by the signs of BC and BT : A positive lo
ally averaged BC 
orresponds to abaro
lini
 instability, while a positive lo
ally averaged BT implies a barotropi
 instability.Be
ause of the Eulerian stru
ture and hen
e the 
exibility, the lo
alized instability analysis isparti
ularly of use for open 
ow problems.To validate the analysis, we have examined an Eady model, a Kuo model, whi
h admitsonly baro
lini
 instability and barotropi
 instability, respe
tively, and a real o
eani
 frontproblem (IFF). For the Eady model, BT averages to zero, while BC yields a positive residue,just as expe
ted. In more detail, for all verti
al levels, BC horizontally averages to a positivequantity. The potential energy is 
ontinuously transferred from the large-s
ale reservoir tothe eddy window, with a uniform distribution in the verti
al dire
tion. At the same moment,a signi�
ant part of the transfer is 
onverted into the eddy kineti
 energy. This 
onversiono

urs mainly at mid-depth, where the 
onverted energy is 
arried away toward the surfa
e andbottom via verti
al pressure work. The �nal result of the instability is an intensi�
ation of boththe density perturbation and the velo
ity perturbation toward the two verti
al boundaries, inagreement with the known results.The IFF meandering intrusion is related to the Eady instability, but it is �nite in amplitude(nonlinear) and highly lo
alized in nature. Our analysis yields an almost solitary positive BC
enter (BT negligible), whi
h 
learly implies a baro
lini
 instability around the intrusionregion. The 
ow is 
hara
terized by a spatially growing mode (
onve
tive instability), whi
his then lo
ked into a temporally growing mode (absolute instability). The energy transferis from an irregularly evolving ba
kground, into an eddy window highly lo
alized within aninterval of 2.6 days. The whole pro
ess is analyzed easily with our formalism whi
h wouldotherwise be diÆ
ult to deal with. 22



For Kuo's 
osine jet model, BT averages to a positive quantity, indi
ating a barotropi
instability pro
ess. This instability has a meridionally stru
ture, whi
h is not identi�able inthe 
lassi
al framework. The most 
onspi
uous feature is that there exist two narrow strips atthe two 
anks where the energy transfer is negative. That is to say, the system is lo
ally stable,even though the eddy energy is growing. The moral of this study is that perturbation growthdoes not ne
essarily 
orrespond to instability, and that underlying the mean-eddy stru
tureintera
tion there is a me
hanism whi
h has been faithfully represented by our perfe
t transfer(in this 
ase, BT ). This striking negative transfer embedded in an unstable �eld provides atou
hstone for our lo
alized instability theory.The inverse transfer allows for a 
ir
ulation of energy within the energeti
 s
enario in a Kuo-type barotropi
 instability. The large-s
ale KE is �rst transferred toward the eddy window,within two 
riti
al latitudes resembling two \walls" of an \energeti
 well" around the jet
ore. The transferred energy is redistributed by �yQK1n , whi
h dire
ts it poleward, but theredistribution stops near the walls, barely going further. The energy thus a

umulated nearthe two 
riti
al latitudes has been observed to transfer ba
k toward the large-s
ale window,a
ting as a feedba
k to the ba
kground system.We 
lose this paper by remarking that the marginalization-lo
alization strategy used inthis study to lo
alize instabilities may have interesting s
ienti�
 and pra
ti
al impli
ations.Certain dynami
s inferen
e problems might be ta
kled in a similar way. Information lost in a
lassi
al framework 
ould be retrieved with the aid of some lo
alized mathemati
al ma
hinery,and quantities global in nature made �eld-like. In doing so, many GFD theories developed ona global basis 
ould be re
on
iled to realisti
 o
eani
 and atmospheri
 problems.A
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tsN00014-95-1-0371, N00014-02-1-0989 and N00014-97-1-0239 to Harvard University.A Generation of the Eady datasetsOriginally, Eady (1949) built his model from a fri
tionless primitive equation set on an f -plane with Bousinesq and hydrostati
 approximations. The model domain extends in�nitelyin either horizontal dire
tion, and is bounded at z = 0 and z = �H by two rigid-lids. It has abasi
 velo
ity (�u; 0; 0) and a mean density pro�le �� su
h that ��u�z = � = 
onst; �� = Byy+Bzz:Assume an exponential dependen
e ei(kx+ly�!t) for the perturbation �elds, where the frequen
y! = !r + i!i is 
omplex, and write � = �uk�!f , � = lk , Ri = � gBz�0�2 , R� = (1 + �2)Ri,� = �pR�2f �Hk. Eady shows that, when Ri � 1 and j�2j � 1, the problem has a nontrivialsolution if and only if8><>: !r = k2 (�u(0) + �u(�H))!i = 
 fpR� ; 
2 = (� � tanh�)(
oth�� �) (A.1)Unstable solutions exist only if j�j < �
rt � 1:1997. Correspondingly the eigenfun
tions are:~w(z) = �1� �1 + ��i�2 � C1epR��(1�pR��) + C22�pR��(1 +pR��); (A.2)~u(z) = � �=f1 + �2 ���� d ~wd� � i(�2 ~w� + d ~wd� )� ; (A.3)~v(z) = � �=f1 + �2 �1� d ~wd� + i�( ~w� � d ~wd� )� ; (A.4)~P (z) = � �=f1 + �2 � f�0ik � �(1� d ~wd� + i� ~w� ) + ( ~w � � d ~wd� )� ; (A.5)~�(z) = �=f1 + �2 � fa�0g � i� � �(1� d ~wd� +R� ~w) + i�( ~w� � d ~wd� )� ; (A.6)where the 
onstants C1 and C2 are related throughC2C1 = �e�2pR��(0)  1�pR��(0)1 +pR��(0)! :In these equations, all variables are dimensional.We 
hoose the following 
on�guration to generate the Eady datasets:24



�0 = 1025 kg/m3 H = 1000 m�u0 = 20 
m/s �u�H = 10 
m/sBz = �1� 10�2 kg/m4 f = 1� 10�4 HzIt is easy to 
he
k that the two 
onditions under whi
h the Eady solution is valid are satis�ed.Without losing generality, let l = 0. The shortwave 
ut-o� (
orresponding to �
rt) asso
iatedwith (A.2) - (A.6) is then k
rt = 2:454 � 10�5 m�1. Given a k < k
rt, an unstable solution isobtained, and 
orrespondingly a dataset 
an be generated. We now 
he
k its 
onsisten
y.For a dataset to be 
onsistent for the MS-EVA appli
ation, its time sequen
es should be:(1) long enough to span some integer 
y
le(s), otherwise aliasing e�e
ts will 
ome in andgive a spurious basi
 
ow for the de
omposition; (2) short enough that the amplitude ofperturbation is within the toleran
e of a valid linear solution. These requirements 
an besatisfa
torily met if we 
hoose an unstable system with perturbation large in frequen
y whilesmall in growth rate, i.e., j!rj � j!ij. By (A.1), if we have k distin
tly larger than zero, andat the same time let 
 ! 0, then this 
ondition is satis�ed. Su
h k's lie near the 
riti
alwavenumber k
rt (noti
e k / � when l = 0). We 
hoose k = 1 � 10�5 m�1, whi
h gives an! = 1:50 � 10�6 + 2:53 � 10�7i rad/s, meeting the above requirements.With the eigenvalue and eigenve
tor, we 
ompute the solutions of all the �elds and trun
atethem at exa
tly the end of the se
ond 
y
le to form a series for ea
h data point. The serieslength is then
e 2� 2�!r � 8:38 � 106 s = 97 days:Within this interval, disturban
es grow at most by exp(8:38 � 106!i) � 8:31 times. So, ifinitially the perturbation is set smaller than the basi
 �eld by 18:31" (" the permissible relativemagnitude for a linear disturban
e), then the solution will be valid throughout the 97-daytime duration. This 
an be done by properly manipulating the 
onstant C1 of W (z) in (A.2).Let C1 = 2� 10�7. It yields a maximal ju0j=�u < 10�3, whi
h is mu
h smaller than the Rossbynumber Ro = UfL � 10�2.Apart from the unstable solution, we also need to examine the energeti
s for a stable modeand a neutrally stable mode. We 
hoose for the two modes k = 3 � 10�5m�1 > k
rt and25



k = k
rt = 2:454� 10�5 m�1, whi
h yield !r = 4:04� 10�6 rad/s and !r = 3:68� 10�6 rad/s,respe
tively. Again, the solution series are trun
ated at the end point of the se
ond 
y
le(36 days and 39 days in length, respe
tively). The three 
hosen solutions are sampled at210 = 1024 time instants, and mapped onto an Arakawa B-grid with a mesh of 20 km � 50 km� 100 m (50 points in x, 20 points in y, and 10 levels in z). The datasets obtained are nowready for the MS-EVA appli
ation.B Kuo's barotropi
 instability modelWe 
onsider a primitive equation version of Kuo's original quasi-geostrophi
 model (Kuo, 1949;1973). On an f -plane, equations governing the 2-D perturbations from a zonal barotropi
 jet�u = �u(y) are redu
ed to d2~vdy2 + � �uyy
� �u � k2� ~v = 0; (A.7)where ~v is the amplitude of perturbation y-velo
ity, 
 = !=k the phase speed, and �uyy = d2�udy2the gradient of the ba
kground potential vorti
ity. In a 
hannel bounded to the north andsouth respe
tively by y = L and y = �L, the boundary 
ondition is~v = 0; at y = �L: (A.8)Eqs. (A.7) and (A.8) form the eigenvalue problem of barotropi
 instability.Consider a 
osine ba
kground jet [see Eq. (18)℄. The above eigenvalue problem is solvedwith the approa
h by Kuo (1949) (see also, Kuo, 1973; Pedlosky, 1979). We need a neutrallystable solution and an unstable solution. For the former, there exists an eigenvalue (phasespeed) 
 = �u(y
) = 12 �umax whi
h gives a wavenumber k = p32 �=L, and an eigen-amplitude forthe meridional velo
ity ~v = �umax 
os �y2 .The 
hoosing of the unstable mode is not arbitrary. For a valid dataset, the eigenvalue
 = 
r + i
i must be su
h that j
ij � j
rj while 
i is signi�
antly greater than zero. As in theEady 
ase, a k near its 
riti
al value p32 �L (on the unstable side, of 
ourse) will yield su
h asolution. We 
hoose k = 0:75 �L . Use the shooting method (e.g., Press et al., 1992) to solve26



(A.7). The 
onvergen
e is usually very fast, and the resulting eigenvalue thus obtained is 
 =
r+ i
i = (0:4504+0:0476i)�umax . Clearly j
ij is mu
h smaller than j
rj, allowing an extra
tionof several 
y
les from the solution to form the dataset. In obtaining the eigenfun
tion, themagnitude of j~vrj has been made small so as to have the solution valid throughout.To generate the datasets, 
hoose L = 100 km, �umax = 1 m/s, f = 10�4 1/s, whi
h aretypi
al of western o
ean jets, and let x run over [-2L, 2L℄, and t span exa
tly two 
y
les(approximately 21 days for the neutrally stable mode and 14 days for the unstable mode).With the k's 
hosen, the x extends at least one wavelength for either of the datasets, allowingan appli
ation of the zonal average whenever ne
essary. The solutions are mapped on anArakawa B-grid with 40 � 80 grid points (�x = 10 km, �y = 0:5 km), and sampled at210=1024 time moments. These gridded solution sequen
es are now ready for MS-EVA.Referen
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Table CaptionsTable 1: Symbols for multis
ale energeti
s (lo
ation n, window $).Kineti
 energy (KE) Available potential energy (APE)_K$n Time rate of 
hange of KE _A$n Time rate of 
hange of APE�QK$n KE adve
tive working rate �QA$n APE adve
tive working rateTK$n ;h KE transfer due to horizontal 
ow TA$n ;�h� APE transfer due to hor. grad. of �TK$n ;z KE transfer due to verti
al 
ow TA$n ;�z� APE transfer due to ver. grad. of ��b$n Rate of buoyan
y 
onversion b$n Rate of inverse buoyan
y 
onversion�QP$n Pressure working rate TSA$n Imperfe
t APE transfer due to ����z
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Figure CaptionsFigure 1. Instability indi
ators BC = T 0!1A1n;�h� + T 0!1A1n;�z� + TS0!1A1n (TSA1n = 0 here) andBT = T 0!K1n;h + T 0!K1n;z as fun
tions of x for the mid-depth (level 5) of the unstable Eadymode (
f. Appendix A).Figure 2. Horizontally averaged BC (a) and time rate of 
hange of eddy energy E1n (b) asfun
tions of verti
al levels. The symbol h�ixy indi
ates averaging over a wavelength on the x-yplane.Figure 3. Topography of the I
eland-Faeroe Front region. Inserted in the middle is thesurvey domain superimposed with a satellite image for the sea surfa
e temperature on 22August 1993.Figure 4. A time series of the temperature (top, solid), and its large-s
ale window synthesis(top, dashed) and eddy window synthesis (bottom) for point (11oW, 64oN), depth 300 m.The de
omposition is su
h that pro
esses with periods shorter than and equal to 2.6 days(
hara
teristi
 of the meandering intrusion) are in
luded in the eddy window. In the bottompanel, signals with periods shorter than 0.75 day have been �ltered out. The fore
ast startson August 14 (day 0), 1993.Figure 5. BC evolution for the IFF region from August 17 through 22, 1993 at depth 300 m.The units are in m2=s3.Figure 6. A sket
h of the ba
kground velo
ity �u(y) (a), and vorti
ity gradient �qy = ��2�u�y2 (b)for the Kuo model. The �ve regimes resulting from this basi
 stru
ture and the 
hosen phasespeed 
r (see App. B) are indi
ated in (
).Figure 7. A snapshot of of u0 (a) and v0 (b) for the barotropi
ally unstable mode (kL = 34�).See App. B for explanation of parameters.Figure 8. Meridional distribution of the x-averaged BT for the unstable Kuo mode. Noti
ethe two sharp negative valleys. They 
orrespond to the two narrow regimes in Fig. 6
. (b)A 
lose-up of (a) around y = �0:53L with six times model resolution. Symbol h�ix signi�esaveraging over one wavelength in the zonal dire
tion.30



Figure 9. Energy extra
ted by Reynolds stress against the basi
 
ow pro�le D�u0v0 ��u�yEx (inm2/s2) for the unstable Kuo mode (averaged zonally over one wavelength). Noti
e the twopositive peaks around �50 km. (in 
ontrast to the two sharp valleys of Fig. 8a).Figure 10. Eddy energy growth rate (averaged zonally over one wavelength) D _K1nEx (in m2/s2)for the unstable Kuo mode.Figure 11. Horizontally averaged energies 
A1n�xy (a) and 
K1n�xy (b) (in m2/s2), and energeti
terms 
b1n�xy (
), D�zQP 1nExy (d) (in m2=s3).Figure 12. A 
artoon of the energeti
 s
enario for the Eady-like baro
lini
 instability. Whenthe instability happens, potential energy is transferred from the large-s
ale window towardthe eddy window, and the measure of this transfer, hBCixy (The angle bra
ket represents anaveraging over the x-y plane.) is uniformly distributed in the verti
al dire
tion (middle row).At the same time, the eddy APE is 
onverted to the eddy KE. The 
onversion is maximized atthe middle depth, where the 
onverted energy is brought upward and downward by the verti
alpressure work (D�zQP 1nExy). The whole pro
ess results in two dumbbell-shape distributionsof eddy potential energy and kineti
 energy with depth (see Fig. 11).Figure 13. A 
artoon of the MS-EVA pro
esses that make the Kuo barotropi
 instability.Hat
hed are the 
riti
al regimes where (�u� 
r)�qy < 0.
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f. Appendix A).
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