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SUMMARY

A robust and practical methodology for multi-model ocean forecast fusion has been sought. To this
end, we consider an extension of Maximum-Likelihood (ML) error parameter estimation to multi-model
predictive systems and utilize the resulting methodology for adaptive Bayesian model fusion. Proposed
multi-model error parameter estimation is based on the Expectation-Maximization (EM) method, with
the true state-space vector treated as missing data to simplify the log-likelihood expression. With only one
forecasting model, the method reduces to the standard maximum-likelihood error parameter estimation.
Synthetic data tests indicate the importance of the EM-based approach as opposed to simple transfer of
the standard methodology developed for a single model system to multi-model systems.

Efficient solution of the pertinent minimization problem is the focus of the second half of the study.
Bayesian Multi-Model Fusion represents a computationally intensive task and might be impractical
for real-size applications. We discuss a randomized algorithm that alleviates the problem and cuts the
computational complexity and storage to practical limits at a controlled expense of optimality. Our
method is based on constructing and maintaining “randomized sketches” of the full Bayesian Model
Averaging matrices instead of their full high-dimensional counterparts.

We illustrate the methodology on the example of two-model HOPS/ROMS forecasting within the
framework of AOSN-2 real-time forecasting experiment held in Monterey Bay in 2003.

KEYwoORDS: Data Assimilation Ocean and Atmospheric Forecasting Adaptive Methods

1. INTRODUCTION

Various forecasting models have different skill in capturing aspects of reality
and therefore forecasting could be improved through model combination. The
methodology for ocean/atmospheric multi-model forecasting, however, is at an
early stage. Current practices are dominated by the multiple-regression based
approaches (e.g. Krishnamurti et al. 1990, Kharin and Zwiers 2002, Doblas-
Reyes et al. 2000) and require a substantial training data set. On the other hand,
real-world forecasting systems must adapt and evolve in response to modeled
processes. Use of multi-models has been hampered by the fact that the time
scale for changes to a forecasting system is often shorter than the time it
takes to collect a sufficient sample of past events for robust model combination.
In this paper, we work around this limitation by treating the optimal model
combination as a non-stationary problem that calls for an adaptive version of
methodology. We advocate an adaptive Bayesian model fusion that consists of
the following three general steps: a. parameterization of forecast uncertainties
through either a suitable parametric family (offers computational advantage)
or through a low-rank approximation (allows for non-homogeneous dynamically
motivated error subspaces); b. update of forecast uncertainty parameters via
maximum-likelihood (Section 2); and c. combining model forecasts based on
their relative uncertainties via maximum-likelihood (Section 3). In order to
implement step b. in the foregoing we have extended the maximum-likelihood
Error Parameter Estimation to multi-model forecasting systems through the
expectation-maximization technique.

The rest of the paper is organized as follows. In Section 2, we describe the
multi-model error parameter estimation based on maximum-likelihood. The core
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part of the construction is the expectation-maximization technique. In Section 3,
we apply this developed methodology for multi-model Bayesian fusion and also
discuss efficiency issues. Finally, we illustrate the methodology on the example of
AOSN-2 HOPS/ROMS real-time forecasting exercises in Monterey Bay in August
2003.

2. MuLTI-MODEL ERROR PARAMETER ESTIMATION

(a) Setup, Notation, Motivation
Suppose a multi-model ocean/atmospheric predictive system consists of m
models that produce independent forecasts, {x’f, x’zc, cey x’ﬁn}szl, valid at times

4} | with the corresponding forecast error {€¥, €k, . .., €k } . Suppose also
k=1 k ek e
Kf , become available.

that validating measurements, {yk}]i , With error {elg} P

We pose ourselves with the problem of_ﬁlnding the optimal strategy for combining

model forecasts, x’f“, x’2“+1, ..., x®1 the next time prediction is being made.
Let x be the true state-space on a central forecast grid (the central forecast

domain, for example, being the largest model domain in the forecasting system)

and H; be linear mapping from the central forecast state-space onto the sth model

state-space

x, = Hx 4+ ¢ i=1,...,m (1)
y = Hxx + e

The length of time window K is taken to reflect the time scale of changes to a
forecasting system. Denote all past forecasts and validating data within the time

window K as D, D= {x’f, xk . xE yk} p—1- The maximum-likelihood fusion
of forecasts x¥ 1 xk+1 . xk+1 is defined as
* _ k+1 L k+1 k+1
X" = arg max {p(x|x1 s Xy e, X ,D)} (2)

We simplify (2) by parameterizing forecast uncertainties and combining
forecasts via

X = arg max {p(x|x’f+1’ x’2“+1’ - ,x’iﬂ*’l, (-)*)} (3)

where ©* denotes the estimates of forecast uncertainty parameters in m models
found by maximizing the log-likelihood of parameters given data, D

O =arg max L (@"D) O ={a;}i% 4)

Parameterization of uncertainties is needed to reduce the number of degrees
of freedom in the system to ensure robust parameter estimation from data avail-
able within the time window K. We hereby assume unbiased Gaussian forecast
errors, € ~ N'(0,B;), B; = (e;el'), and forecast error covariances, {B;}™, rep-
resented either via a suitable parametric family, B; =~ ]:D)z-(ai), or via a low-rank

. . o
approximation, B; ~ VpQ(a)Vg = 5’:1 qg )vinT. The exact way of parameter-
izing B;s remains at a discretion of a researcher. In cases when errors are known
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to be non-Gaussian, a mixture of Gaussians can be utilized to approximate the
probability densities, p(€;) ~ Zlel N (0, B;;), and the expectation-maximization
procedure that solves the mixture of Gaussians estimation problem can be in-
cluded on top of the methodology described in this paper, with only minor
modifications. For the sake of simplicity, we do not discuss this case here and
refer a reader to Redner (1984) for a review of mixture of Gaussians problem.

(b) single-model and multi-model error parameter estimation

With only one forecasting model, x;, the Gaussian error assumption leads
to a standard maximum-likelihood error parameter estimation from model-
data misfits (Dee 1995, Dee and da Silva 1999, Purser and Parrish 2003).
Since a sum of Gaussians, €; and €,, is also a Gaussian, with covariance
(e1€l) + (€,€l), model-data misfits, d =y — Hx;, are random samples from
the normal distribution A'(0, Q(x)), where Q(c) is the sum of the forecast

and the observation error covariances, Q(a) = HB(a)H? + R. The Maximum-
Likelihood (ML) error parameters are then found through minimizing the log-
likelihood expression

o =arg mailn L) (5)

K
L(a)=(a- ao)T2;1 (o — ap) + log det Q(a) + % Z dfQ Ya)d;
k=1

where the first term describes prior information on parameter values,
N (ao, Za), and can be omitted if no such prior information is available.

In a multi-model system (1), model-model misfits are another source of
information about forecast errors that complements the information contained
in model-data misfits. Learning forecast errors from model-data misfits only,
within each model separately, is equivalent to ignoring the information contained
in model-model misfits and results in suboptimal error parameter estimation.
Synthetic data tests presented later in this Section indicate that this leads
to significant degradation of error parameter estimates (Table 1). Multi-model
maximume-likelihood error parameter estimation corresponds to maximizing the
joint posterior probability

{X, ©} = arg max p(x, ©|D) (6)

which contains all the information about the true state, x, and the true error
parameters in m models, ®, given available data D within an appropriate time
window K.

(¢) multi-model error parameter estimation via expectation-mazimization

We discuss one practical way of solving (6). We notice that the problem is
amenable to a missing data interpretation. If we knew the true state-space x, error
parameter estimation would have become straightforward. We therefore augment
the data, X = {’D, x}, where x is the true state-space in the observation space,
and expand the joint probability density, p(x, ®|D), in terms of the complete-
data likelihood, p(x, ®|D) x p(®|X)p(x|D). The incomplete-data log-likelihood
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function log p(®|D) can not be easily expressed. However, the complete-data
log-likelihood, log p(®|X), is readily expressible. The ezpectation-mazimization
methodology has been designed specifically to handle this type of problems
(Dempster et al. 1977). The complete-data log-likelihood is expressed as

m
log p(®|x, D) x ZlogdetB a; +Z x—HxZ l(ai)(x—Hixi) (7)
=1 =1

where H; denotes linear mapping from the ith model state-space onto the
observational space, and B;(e;) is the ith model forecast error covariance in

the observational space, B; = HZB,HZT The prior term (G) — G)O)Tilé1 (G) — G)O)
again could be included in (7) given N (@0, Z@) prior on ®. The marginal
probability density p(x|D) is a normal distribution

Pt X % y) =N (.0, o (0) ) ®)

with the analysis, x,

X, = arg min Z (x — Hixi)TBi_l(ai)(xi — ’Hix) + (x — y)TR_1 (x — y)

T =1
(9)
and the analysis error covariance, B,(©)
B,'(©) =8B, (a1) + B, (a2) +...+ B, (am) + R (10)

An alternative to (9) is a closed form expression

x, = B,H{ B 'x; + B.HS By 'xo + ... + B;HL B 'x, + B,R ™'y (11)

The forecast error parameters, ® = {a;};*; are not known in (7)-(11). We
proceed by applying the expectation-maximization formalism which consists of
maximizing the expectation of the complete-data log-likelihood given previous

estimate or guess at parameter values, Q(©, (':)k)

E: Q(O, @k) = 5x|D,ék{ log p(x, D|(-))} = fx log (£(®|x, D))p(xﬂ), (:)k)dx

M: OF!l= arg max Q(®, OF)
S}

(12)
That is, we use ©* for the purposes of estimating the marginal density (8)

p(x|D, eF) :N<x, xk, Ba(@k)) (13)

and employ (13) to evaluate the expectation of the complete-data log-
likelihood (E step). We next update the current parameter estimates by max-
imizing the expected value of the complete-data log-likelihood (M step). The
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procedure is known as Fzxpectation-Maximization and is provably convergent
(Dempster et al. 1977, Redner 1984). By substituting (13) in (12) and us-

ing Gaussian integral identity, [ (x — Hixi)TB-_l (x — Hix; )N (x, X4, By )dx =

7
(xa - Hixi)TBZ-_1 (xa - Hixi) + Tr Bi_lBa for every term in (12), we obtain a

closed form expression for the expectation of complete-data log-likelihood

m m
. T 4o .
Q(©,0%) o« Y " log det Bi(aw) + Y (X —Hix;) By (o) (XF — Hixi)  (14)
i=1 i=1
Hence, the expectation-maximization procedure simplifies to a sequence of
iterative updates to the analysis in the observation space, fc’g, based on current

error parameter estimates, @k, and subsequent updates to the error parameter
values from model-analysis misfits

%% = arg min py (x — Hixi)TBz-_l(al-c_l) (x - Hixi) + (x — y)TR_1 (x - y)
T

. : . T o .
OFtl = arg rrgn S logdet Bi(a) + 37 (%F — Hix;) B ' (o) (% — Hix;)

(15)
The analyses, X%, in (15) could also be computed through (11).

(d) Synthetic Data Tests

An improvement that the EM-based procedure brings as compared to error
parameter estimation from model-data misfits stems from inclusion of information
contained in model-model misfits. Synthetic data tests in which the “truth”
and the “true” error parameter values are generated and hence known can be
carried out to illustrate the improvement for different uncertainty parameters
attributed to observations. Figure 1 illustrates an example of such a synthetic
data experiment, whereas Table 1 summarizes the statistics. Two “models” (blue
and green lines in Figure 1) are drawn independently at random from a normal
distribution around a synthetic “truth” (black line in Figure 1), with chosen error
covariance parameters. An isotropic covariance model, B(x, y) = o2p(||x — y||),
with the fifth-order piecewise rational representing function, p(r) = p.(r, L), given
by (4-10) in Gaspari and Cohn (1999), has been utilized. The choice of the
covariance model was arbitrary and made solely because it yields well-conditioned
B;(a;) for the whole range of parameter values. Error length scale parameters
in models have been intentionally chosen very different. Synthetic “observations”
have also been drawn at random from a Gaussian distribution, with diagonal
covariance R. The upper panel in Figure 1 illustrates the data that the multi-
model error parameter estimation procedure is run on. The middle and the
bottom panels show the analyses (magenta lines) computed with error parameters
obtained from model-data misfits only (middle panel) and through the EM
procedure described in this paper (bottom panel). An experiment illustrated
in Figure 1 was repeated 100 times for each uncertainty level attributed to
observations (Ratio in Table 1) to collect statistics. Table 1 illustrates that given
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a sufficient level of uncertainty in measurements as compared to uncertainty in
models, the information contained in model-model misfits leads to a significant
improvement of error parameter estimates and of a multi-model analysis.

3. MAXIMUM-LIKELIHOOD FORECAST FUSION

(a) Formalism
Once error parameters have been estimated we can combine models based
on their relative uncertainties via the maximum-likelihood principle. Given
independent forecasts, x1, X2, - . ., Xy, the conditional probability density of the
true state, x, expands via individual forecast pdfs

p(x[x1, X2, .., xm) = p(x|x1)p(x[x2) . . . p(x[xm) (16)

and, under the Gaussian error assumption, individual pdfs read p(x|x;) =

N (Hix, X, Bi(o}i)), where H; maps from the central forecast state-space onto the
ith model state-space as in (1). The forecast error parameters, @;, are estimated

through (15). The maximum-likelihood (minimum variance) central forecast, x,
corresponding to (3) is found as

X, = arg min Z (xi — Hix)TBi_l(di) (xi - Hix) (17)
T =1
or
x.=BHB['x; + B.HIB; 'xy + ...+ B.H.L B, xp, (18)

with the central forecast error covariance, B., given by

-1
B. = (3;1 +By .+ Bm1> B '=H/B;'H; (19)

The above procedure is equivalent to Bayesian Model Averaging (BMA),
x. = Ci1x; + Coxo + ... + C,,x,,, with Bayesian weight matrices, C;s, given by
B.H!B;'. Denote the sum of columns of a C; as p;

ni
pi=|Ci|,=>_ Ci(iin)Vj Ci=BH/B;' (20)
n'=1

where j is the central forecast grid point index. Bayesian weights, p;s,
provide the spatial distribution of a fraction of information to be assimilated from
the 4th model into the central forecast and satisfy p;(j) >0 Vj and > 1", p; = 1.
P;s indicate how model error parameters translate in terms of relative model skill.
Since it is generally desirable that no extra smoothing be introduced through
model fusion, C;(j, :)s are to be replaced with p;(j)s in the overlapping parts of
the central and ith model domains, x. € x;, for the purposes of Bayesian model

fusion

_ f)lxla X% €X f)QXQ, Xg € Xo f)mxma xﬁ € Xm 21
Xe — ~ XJ C j +...+ C j ( )
Cix1, x¢ ¢ X1 2X2, X ¢ X2 mXm, Xc ¢ Xm
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It is worthwhile to point out the differences and similarities of (21) to the
multiple-regression based approaches. In the foregoing, we assumed independent
model forecasts and therefore uncorrelated errors between models. This is equiv-
alent to enforcing the block-diagonal structure of cross-covariances, (X7X), in
the multiple-regression based methodology where X is the design matrix, such
that the regression weights are found as wrs = (X7 X)~1(X”y). Bayesian model
fusion is more general than the multiple-regression analysis in that the optimal
weights, p;s, are inhomogeneous in space. p;s have a direct interpretation as
probabilities of an ith model being correct, variable over the central forecast
domain. The weights in the multiple-regression analysis do not have such clear
interpretation.

(b) Efficiency Issues

Bayesian model fusion (3), both if 1mplemented via (17) or 192
represents a computationally intensive task, with O(n®m) complexity and O(n
storage requirement when carried out dlrectly (n being the dimensionality of an
individual model state-space, O(10% — 107), and m the number of models). This
might be impractical for some real-world applications. The difficulty of Bayesian
multi-model fusion stems from the fact that variational analysis in a multi-model
system is fundamentally computationally more challenging than in a single-model
system. In a single-model system, the full background error covariance matrix,
B, never has to be stored and it’s inversion can be avoided through change
of variables, e.g. v =B~!(x — x?) (Huang 2000), such that each iterative step
of cost function minimization with respect to the new state-space v involves
the multiplication by B rather than its inverse. It is generally not possible to
completely avoid the background error covariance inversion in a multi-model
system. The matrix identities that express the analysis error covariance, B, =
B !'+H'R'H)"! =B - BH'(HBH” + R)"!HB, and bring the analysis
equation to a familiar incremental form, x, =x, + BH! (HBH? + R)~!(y —
Hx;), are not applicable in a multi-model case. On the other hand, if the m
forecasts are merged sequentially, one by one, the central forecast error covariance,
B, has to be updated every time a forecast is merged. This liquidates the initial
parametric or low-rank representation of background error covariances and a
new parametric or low-rank approximation needs to be developed for B, at every
sequential step. This is computationally expensive.

Several approaches can potentially alleviate the problem. We have followed
one of such approaches that derives its efficiency from randomization. The method
is based on constructing and maintaining randomized “sketches” of Bayesian
weights, p;, and makes use of synopsis data structures that resemble “count-min
sketches” developed by Cormode and Muthukrishnan (2005).

(¢) Bayesian weight computation via randomized sketches

The method conceptually amounts to randomized grid sub-scaling through
the use of d hash functions chosen at random and averaging over the results
obtained for these different hash functions. Let Z = {1, ..., n} be indices of ele-
ments in a forecast state-space and J C Z be elements of Z that has already been
sampled. Choose d hash functions hy,...,hg: {Z\ J} —{1,..., w} uniformly
at random from a pairwise-independent family. Denote s;[d, w| to be a sketch of
x € R™, of size (d, w), formed by hashing the elements of x using h1, . . ., hg into d
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w-dimensional vectors (Cormode and Muthukrishnan 2005). The size of a sketch
is independent of the size of the central forecast state-space, n, and (d, w) K n.

Hash the central forecast state-space element indices, {Z \ J<} — sc[1, w].
Hash the individual forecast state-space indices of the m models into m sketches,
each of size (d,w), {si[d, w]}]";. We, next, use the indices hashed in s.[1, w]

and {s;[d, w]}]Z;, to compute Bayesian Model Averaging matrices, {chr,,
for Vj:1<j<d. Every CJ is a w X w matrix CJ BJHTB 1, where Bj;
corresponds to the ith forecast error covariance evaluated for the state-space
elements with indices in the jth row of sketch s;[d, w], i.e. Bij = E{Si(j,:)}(di),
I:Iij are linear mappings from central forecast state-space elements with indices
in s.[1,w] onto ith model state-space elements with indices in s;(j,:), B! is
computed as in (19), with B; and H; replaced by B;; and H;; correspondingly.
Once {C }Z 1» Vj:1<j<d are computed, fill in the Bayesian weight
sketches, {p;[d, w]|}",, by summlng up the columns of C;, 7 (4, :) = Sy Ci(j, w"),
for every model ¢ and every hash function j. Answer the Bayesian weight queries

for central forecast indices {j : j € s¢[1, w]} by averaging the sketches of Bayesian
weights, {p;[d, w]}",, across the hash functions

Pi(j : 7 € 51, w)) sz[d w] (22)
d’ 1

Continue hashing the central forecast state-space element indices, j € {Z¢ \
JEL}, into s¢[l, w] and repeat all the above steps in constructing randomized
sketches until all elements in {Z¢\ J¢} are exhausted, {Z¢\ J<} =0, and full
{p:}" -1 are obtained. The computational complexity of obtaining all m pP;s is
O(nw?md) and the storage requirement is O (nwd), where 7 is the dimensionality
of a model state-space and m the number of models, as compared to the
O(n3m) complexity and O(n?) storage of Bayesian model fusion if carried out
directly. By properties of randomized sketches (Cormode and Muthukrishnan
2005), |p; — pi| < € with probability 1 — § if the sketch size parameters are set
w = [e/e] and d=[In1/§], independent of n. {P;}", sketches that satisfy a
1% accuracy level with probability 99% require w ~ 500 and d ~ 6. By changing
the size parameters, (d, w), we set the computational complexity and storage to

practical limits at a controlled expense of optimality.

4. REAL-TIME FORECASTING IN THE MONTEREY BAY/CALIFORNIA CURRENT
SYSTEM

We illustrate the methodology based on the real-time ocean forecasting
exercises held in the Monterey Bay/California Current system in August of 2003
and designated as AOSN-2. The Autonomous Ocean Sampling Network (AOSN)
project (Figure 2) brought together a wide range of measurements from various
platforms with the state-of-the-art numerical ocean models and was designed
to test and further improve the methods and engineering solutions behind an
integrated observing and modeling system for regional ocean predictions. The full
description of the experiment is available at http://www.mbari.org/aosn/. The
exercises included two competing ocean models, the Harvard Ocean Prediction
System (Robinson and Lermusiaux 2002, Robinson 1999) and the UCLA version
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of the Regional Ocean Modeling System (Shchepetkin and McWilliams 2005).
These two forecasting models, HOPS and ROMS, were defined in overlapping
but slightly different domains (Figure 3a) and operated independently of each
other in real-time. A question was raised of a possibility to boost the overall
forecasting skill of a system by combining the models.

To address the question, we have applied the methodology described in this
paper. AOSN-2 program included two validation CTD surveys, in August 5-7
and in August 21-23 (Figure 3a,d). We have utilized the data from the first CTD
survey to estimate the forecast error parameters in HOPS and ROMS. We have
then applied these parameters for model fusion, as described in this paper. We
have used the data from the second CTD survey to evaluate HOPS and ROMS
forecast skill as compared to the skill of the Central forecast computed through
model combination. Figure 3 provides an illustration of these tests. Panels b. and
c. show an example of HOPS/ROMS individual SST forecasts. The corresponding
Central forecast obtained via Bayesian fusion of HOPS and ROMS is shown in
panel d. Table 2 summarizes some skill metrics, specifically, the rms error and
the forecast SST correlation with the observed SST. These skill metrics have
been accumulated for the individual HOPS and ROMS forecasts, and for the
Bayesian fusion of HOPS and ROMS based on the multi-model error parameter
estimation (CNTRgjs) and error parameter estimation from model-data misfits
only (CNTRgq). We have found improvements in both the rms error statistics
and the forecast correlation with validating measurements in Central forecasts
computed through Bayesian model fusion in the course of described exercises.
EM error parameter estimation procedure brings an additional improvement as
compared to standard error parameter estimation from model-data misfits.

5. CONCLUSIONS

Describing the model fusion process within a probabilistic Bayesian frame-
work through the formalism of multi-model error parameter estimation is a sen-
sible venue for multi-model forecasting. An essential attribute of the proposed
methodology is adaptiveness which is essential in view of continuous changes
made to a forecasting system as part of typically real-world operational prac-
tices. We have demonstrated how the multi-model error parameter estimation
can be carried out efficiently via the EM-based methodology. Synthetic data
tests indicate the importance of the coupled error parameter learning in multi-
models as opposed to parameter learning from model-data misfits within each
model separately. Multi-model fusion via error parameter estimation has been
successfully implemented in AOSN-2 real-time forecasting exercises to improve
forecast quality.
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MuLTi-MODEL FUSION AND ERROR PARAMETER ESTIMATION

TABLE 1. NORMALIZED* RMS ERROR

via EM formalism from model-data misfits

Ratio** o L Xq o L Xq
0.10 0.10 0.18 1.05 0.17 0.21 1.1
0.25 0.11 0.20 1.10 0.18 0.23 1.2
0.50 0.14 0.23 1.25 0.21 0.27 1.4
0.75 0.16 0.25 1.35 0.25 0.32 1.7
1.00 0.17 0.26 1.40 0.30 0.38 2.1

* by true parameter values in case of o, L and by the rms

of the “true” analysis for x,. ** Ratio = — %o __
y
rmsq1+rmsg

TABLE 2. SST FORECAST SKILL
HOPS ROMS CNTRgp* CNTRg**

rms 1.2 1.6 0.9 1.1
cor® 0.75 0.68 0.83 0.80

* Central forecast based on error parameter es-
timation via EM, ** error parameter estimation
from model-data misfits, © correlation.
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Figure 1. Synthetic data test illustration. (Upper panel): two model forecasts and validating observa-
tions; (Middle panel): analysis based on error parameter estimation from model-data misfits (Bottom
panel): analysis based on multi-model error parameter estimation described in this paper.
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Figure 2. AOSN-2 experiment schematic (courtesy of Dr. James Bellingham, Monterey Bay Aquarium
Research Institute).
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HOSP/ROMS domains and validating CTD stations
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Figure 3. (Panel a.) HOPS (blue) and ROMS (green) domains, and 1st survey CTD stations;
(Panel b.) HOPS SST forecast; (Panel c.) ROMS SST forecast; (Panel d.) Bayesian fusion of
HOPS/ROMS forecasts, and validating CTD stations (2nd survey).



