Application of the ESSE System to Real-Time Error Forecasting, Data Assimilation and Adaptive Sampling off the Central California Coast during AOSN-II:

Pierre F.J. Lermusiaux, Wayne G. Leslie, Constantinos Evangelinos (MIT), Patrick J. Haley, Oleg Logoutov, Patricia Moreno, Allan R. Robinson, Gianpiero Cossarini (Trieste U.), X. San Liang, Sharan Majumdar (U. Miami)

Harvard University
www.deas.harvard.edu/~pierrel
AMS Annual Meeting, Seattle, WA, January 13, 2004

1. AOSN-II: Ocean physics and August 2003 experiment background
2. ERROR SUBSPACE STATISTICAL ESTIMATION (ESSE)
3. Field/error predictions, Assimilation, Adaptive sampling, Dynamical investigations
4. Conclusions

AONS-II Team: Cal-Tech, Princeton, MBARI, JPL (ROMS), NRL, NPS, WHOI, SIO, etc
Calif. Current System (CCS)

- Upwelling/Relaxation at Pt AN/ Pt Sur:
 - Upwelled water advected equatorward and seaward
- Coastal eddies, jets, squirts, filaments, etc.:
- California Undercurrent (CUC):
 - Poleward flow/jet, 10-100km offshore, 50-300m depth
- California Current (CC):
 - Broad southward flow, 100-1350km offshore, 0-500m depth

Conceptual model: Rosenfeld et al., 1994
Bifurcated flow from an upwelling cente
Real-time ESSE: AOSN-II Accomplishments

• 10 sets of ESSE nowcasts and forecasts of temperature, salinity and velocity, and their uncertainties, issued from 4 Aug. to 3 Sep.
 - Total of 4323 ensemble members: 270 – 500 members per day (7×10^5 state var.)
 - ESSE fields included: central forecasts, ensemble means, $a\ priori$ (forecast) errors, $a\ posteriori$ errors, dominant singular vectors and covariance fields

• Ensemble of stochastic ocean model predictions
 - PE of Harvard Ocean Prediction System (HOPS)
 - Forced by deterministic 3km and hourly COAMPS flux predictions
 - Oceanic stochastic forceings for sub-mesoscale eddies, BCs and atmos. fluxes

• ESSE results described and posted on the Web daily
 - Discussion of predicted errors, fields/features and their dynamics
 - Outline of uncertainty initialization and forecast procedures
 - Web: http://www.deas.harvard.edu/~leslie/AOSNII/index.html
Real-time ESSE : AOSN-II Accomplishments (Cont.)

• ESSE data assimilation
 - 10^4 data points per day: ship (Pt. Sur, Martin, Pt. Lobos), glider (WHOI and Scripps) and aircraft SST data, within 24 hours of appearance on data server
 - Data analyzed and quality controlled daily for real-time forecasts

• ESSE fields formed the basis for daily adaptive sampling recommendations

• Adaptive modeling: Oceanic boundary conditions and model parameters for transfer of atmospheric fluxes calibrated and modified in real-time to adapt to evolving conditions

• 23 sets of real-time OI nowcasts and forecasts (Robinson et al., Session 1, New Forecast Systems, 4:30pm today)

• Real-time research work on: coupled physics-biology, tides, free-surface PE model
Oceanic responses and atmospheric forcings during August 2003

Domain-averaged wind stress amplitude, with sign of alongshore component.
Oceanic responses and atmospheric forcings during August 2003

Aug 10: Upwelling

Aug 16: Upwelled

Aug 20: Relaxation

Aug 23: Relaxed
Error Subspace Statistical Estimation (ESSE)

- Uncertainty forecasts (dynamic error subspace and adaptive error learning)
- Ensemble-based (with nonlinear and stochastic model)
- Multivariate, non-homogeneous and non-isotropic DA
- Consistent DA and adaptive sampling schemes
- Software: not tied to any model, but specifics currently tailored to HOPS
Ocean Regions and Experiments/Operations for which ESSE has been utilized in real-time

- Strait of Sicily (AIS96-RR96), Summer 1996
- Ionian Sea (RR97), Fall 1997
- Gulf of Cadiz (RR98), Spring 1998
- Massachusetts Bay (LOOPS), Fall 1998
- Georges Bank (AFMIS), Spring 2000
- Massachusetts Bay (ASCOT-01), Spring 2001
- Monterey Bay (AOSN-2), Summer 2003
Atmospheric fluxes from 3km and hourly COAMPS (J. Doyle, NRL): Winds

Sensitivity to horizontal resolution

3km improves Representation of Coastal Jets & Coastal Shear Zone

Our evaluations: e.g. Buoy winds (blue) vs COAMPS 72h forecasts (red dots)
RMSE Estimate
Standard deviations of horizontally-averaged data-model differences

Data Composite for Aug 13

Std of Data–Model Temp at data pts

Std of Data–Model Sal at data pts

Verification data time: Aug 13
Nowcast (Persistence forecast): Aug 11
1-day/2-day forecasts: Aug 12/Aug 13
Bias Estimate
Horizontally-averaged data-model differences

Verification data time: Aug 13
Nowcast (Persistence forecast): Aug 11
1-day/2-day forecasts: Aug 12/Aug 13
Ensemble Mean and Central Forecast
Issued in real-time
Aug 9 – 12: start of Upwelling

End of Relaxation Upwelling period
ESSE Surface Temperature Error Standard Deviations: Before and After ESSE data assimilation
ESSE/ETKF schemes for adaptive sampling

Adaptive Sampling: Use forecasts and their uncertainties to predict most useful observational system in space (locations/paths) and time (frequencies)

Dynamics: $dx = M(x)dt + d\eta \quad \eta \sim (0, Q)$
Measurement: $y = H(x) + \varepsilon \quad \varepsilon \sim (0, R)$

Non-lin. Error Cov.: $dP/dt = \langle (x - \bar{x})(M(x) - M(\bar{x}))^T \rangle + \langle (M(x) - M(\bar{x})(x - \bar{x})^T \rangle + Q$

Linearized Error Cov.: $dP/dt = AP + PA^T + Q$

Metric or Cost function: e.g. $\min_{HiRi} \text{tr}(P(t_f))$ or $\min_{HiRi} \int_{t_0}^{t_f} \text{tr}(P(t)) dt$

Find H_i and R_i

ETKF: Use linearized error cov. eq.
Replace effect of transfer matrix A by a single priori ensemble

ESSE: Use exact nonlinear err. cov.
For every choice of adaptive strategy, an ensemble is computed
Quantitative Adaptive Sampling via ESSE

- Select sets of candidate sampling regions and variables that satisfy operational constraints
- Forecast reduction of errors for each set based on a tree structure of ensembles and data assimilation
- Sampling path optimization: select sequence of sub-regions/variables which maximize the nonlinear error reduction at t_f (trace of "information matrix" at final time) or over $[t_0, t_f]$
Real-time Adaptive Sampling – Pt. Lobos

• Large uncertainty forecast on 26 Aug. related to predicted meander of the coastal current which advected warm and fresh waters towards Monterey Bay Peninsula.

• Position and strength of meander were very uncertain (e.g. T and S error St. Dev., based on 450 2-day fcsts).

• Different ensemble members showed that the meander could be very weak (almost not present) or further north than in the central forecast.

• Sampling plan designed to investigate position and strength of meander and region of high forecast uncertainty.
Aug 26, Calibrated Temp

Real-time Temp 2.5 day Forecast

As above, but DA of calibrated data during Aug 20-23
ESSE DA properties: Error covariance function predicted for 28 August
ESSE DA properties: Error covariance function predicted for 28 August
ESSE Field and Error Modes Forecast for August 28 (all at 10m)
CONCLUSIONS: ESSE in Monterey Bay-CCS in August 2003

• Consistent fully nonlinear ensemble-based
 – Daily real-time predictions of field and errors
 – Data assimilation
 – Adaptive sampling
 – Dynamical analyses

• Two successions of upwelling and relaxed states (Pt AN << Pt Sur, in phase): these processes strongly impact uncertainties
 – Uncertainty scales generally smaller during relaxation than during upwelling period

• Future work:
 • Finalize evaluation of error forecasts, Re-analysis ESSE fields and error
 • Tidal effects matter: regional-scale offshore, (sub)-mesoscale in the Bay