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Two-scale Adaptive Sampling:
• Daily identification of features and errors from model forecasts
• Two-hourly data feedback for glider coordination



Error Subspace Statistical Estimation (ESSE)

• Uncertainty forecasts (dynamic error subspace and adaptive error learning)
• Ensemble-based (with nonlinear and stochastic model)
• Multivariate, non-homogeneous and non-isotropic DA
• Consistent DA and adaptive sampling schemes
• Software: not tied to any model, but specifics currently tailored to HOPS



• Strait of Sicily (AIS96-RR96), Summer 1996

• Ionian Sea (RR97), Fall 1997

• Gulf of Cadiz (RR98), Spring 1998

• Massachusetts Bay (LOOPS), Fall 1998

• Georges Bank (AFMIS), Spring 2000

• Massachusetts Bay (ASCOT-01), Spring 2001

• Monterey Bay (AOSN-2), Summer 2003

Ocean Regions and Experiments/Operations
for which ESSE has been utilized in real-time



Real-time ESSE : AOSN-II Accomplishments
• 10 sets of ESSE nowcasts and forecasts of temperature, salinity and velocity, 

and their uncertainties, issued from 4 Aug. to 3 Sep.
- Total of 4323 ensemble members: 270 – 500 members per day (7 105  state var.)

- ESSE fields included: central forecasts, ensemble means, a priori (forecast) errors, a 
posteriori errors, dominant singular vectors and covariance fields

- 104 data points quality controlled and assimilated per day: ship (Pt. Sur, Martin, Pt. 
Lobos), glider (WHOI and Scripps) and aircraft SST data

• Ensemble of stochastic PE model predictions (HOPS)
- Deterministic atmospheric forcing: 3km and hourly COAMPS flux predictions

- Stochastic oceanic/atmos. forcings: for sub-mesoscale eddies, BCs and atmos. fluxes

• ESSE fields formed the basis for daily adaptive sampling recommendations

• Adaptive ocean modeling: BCs and model parameters for transfer of atmos. 
fluxes calibrated and modified in real-time to adapt to evolving conditions

• ESSE dynamical results described and posted on the Web daily

• Real-time research: stochastic error models, coupled physics-biology, tides



REGIONAL FEATURES
• Upwelling centers at Pt AN/ Pt Sur:….………Upwelled water advected equatorward and seaward
• Coastal current, eddies, squirts, filam., etc:….Upwelling-induced jets and high (sub)-mesoscale var. in CTZ
• California Undercurrent (CUC):…….………..Poleward flow/jet, 10-100km offshore, 50-300m depth
• California Current (CC):………………………Broad southward flow, 100-1350km offshore, 0-500m depth

HOPS –Nested Domains

CC

CUC
AN

PS

SST on August 11, 2003

REGIONAL FEATURES of Monterey Bay and California Current System 
and Real-time Modeling Domains (4 Aug. – 3 Sep., 2003)

Coastal C.

AN

PS



Oceanic responses and atmospheric forcings during August 2003

Upwelling Relaxation



Oceanic responses and atmospheric forcings during August 2003

Aug 10: Upwelling Aug 16: Upwelled

Aug 20: Relaxation Aug 23: Relaxed

Cyclonic Circ.

Cyc. Circ.

Bifurcation

Bifurc.



Aug 12: Initial Conditions Aug 14: 2-day, central fct.

Aug 14: 2-day fct., ens mean

Sample real-time ESSE Products:
Ensemble Mean and Central Forecast

Issued in real-time



RMSE Estimate
Standard deviations of horizontally-averaged data-model differences

•Nowcast: Aug 11 (persistence forecast, red)
•2-day forecast for Aug 13 (green)
•1-day forecast for Aug 12 (blue, to check phase error)

Verification data time:  Aug 13
All forecasts are compared to 
this Aug 13 data



Bias Estimate
Horizontally-averaged data-model differences

•Nowcast: Aug 11 (persistence forecast, red)
•2-day forecast for Aug 13 (green)
•1-day forecast for Aug 12 (blue, to check phase error)

Verification data time:  Aug 13
All forecasts are compared to 
this Aug 13 data



ESSE Surface Temperature Error Standard Deviation Forecasts

Aug 12 Aug 13

Aug 27Aug 24

Aug 14

Aug 28

End of Relaxation Second Upwelling period

First Upwelling periodStart of Upwelling



T0m-T0m
ESSE DA properties: Error covariance function predicted for 28 August

T0m-S0m

T0m-U0m T0m-Psi



Adaptive sampling schemes via ESSE

Adaptive Sampling Metric or Cost function: 

e.g. Find Hi and Ri such that    
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Dynamics: dx =M(x)dt+ dη η ~ N(0, Q)
Measurement: y = H(x) + ε ε ~ N(0, R)

Non-lin. Err. Cov.:
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Adaptive Sampling: Use forecasts and their uncertainties to predict the most useful 
observation system in space (locations/paths) and time (frequencies)



Real-time Adaptive Sampling – R/V Pt. Lobos
• 25 Aug forecast: Large 
uncertainty for 26 Aug. 
related to predicted meander 
of the coastal current which 
advects warm and fresh 
waters towards Monterey 
Bay Peninsula. 

• Position and strength of 
meander were very uncertain 
(e.g. T and S error St. Dev., 
based on 450 2-day fcsts.).

• Different ensemble members 
showed that the meander 
could be very weak (almost 
not present) or further north 
than in the central forecast 

• Sampling plan designed to 
investigate position and 
strength of meander and 
region of high forecast 
uncertainty.

MB Temp. Error Fcst.

Salinity Error Fcst. for Aug 26 Surf. Temp. Fcst. for Aug 26

R/V Pt Lobos track for Aug 26



Quantitative Adaptive Sampling via ESSE

1. Select sets of candidate sampling paths/regions and variables that satisfy 
operational constraints  

2. Forecast reduction of errors for each set based on a tree structure of small 
ensembles and data assimilation

3. Optimization of sampling plan: select sequence of paths/regions and 
sensor variables which maximize the predicted nonlinear error reduction 
in the spatial domain of interest, either at tf (trace of ``information 
matrix’’ at final time) or over [t0 , tf ]

- Outputs:
- Maps of predicted error reduction for each sampling paths/regions
- Information (summary) maps: assigns to the location of each sampling 

region/path the average error reduction over domain of interest
- Ideal sequence of paths/regions and variables to sample 

• Use exact nonlinear error covariance evolution 
• For every choice of adaptive strategy, an ensemble is computed



Which sampling on Aug 26 optimally reduces uncertainties on Aug 27?

4 candidate tracks, overlaid on surface T fct for Aug 26

ESSE fcts after 
DA of each track

Aug 24 Aug 26 Aug 27

2-day ESSE fct

ESSE for Track 4

ESSE for Track 3

ESSE for Track 2

ESSE for Track 1DA 1

DA 2

DA 3

DA 4

IC(nowcast) Forecast DA



Which sampling on Aug 26 optimally reduces uncertainties on Aug 27?

1. Define relative error reduction as: (σ27 - σ27 ) / σ27…..for σ27 > σnoise 

0………………for σ27 ≤ σnoise 

2. Create relative error reduction maps for each sampling tracks, e.g.:

track i

3. Compute average over domain of interest for each variable, e.g. for full domain: 
Best to worst error reduction:   Track 1 (18%),   Pt Lobos (17%),  …., Track 3 (6%)

4. Create “Aug 26 information map”: indicates where to sample on Aug 26 for optimal 
error reduction on Aug 27



Modeling of tidal effects in HOPS

• Obtain first estimate of principal tidal constituents via a shallow water model
1. Global TPXO5 fields (Egbert, Bennett et al.)
2. Nested regional OTIS inversion using tidal-gauges and TPX05 at open-boundary

• Used to estimate hierarchy of tidal parameterizations :
i. Vertical tidal Reynolds stresses (diff., visc.) KT = α ||uT||2 and   K=max(KS, KT)
ii. Modification of bottom stress τ =CD ||uS+ uT || uS

iii. Horiz. momentum tidal Reyn. stresses Σω (Reyn. stresses averaged over own Tω)
iv. Horiz. tidal advection of tracers ½ free surface
v. Forcing for free-surface HOPS full free surface



T section across Monterey-BayTemp. at  10 m

No-tides

Two 6-day 
model runs

Tidal effects
• Vert. Reyn. 

Stress
• Horiz. 

Momentum 
Stress



CHL 
Aug 20

CHL 
Aug 21

CHL 
Aug 22

Post-Cruise Surface CHL forecast (Hindcast)
• Starts from 
zeroth-order 
dynamically 
balanced IC 
on Aug 4

• Then, 13 days 
of physical 
DA

• Forecast of 3-
5 days 
afterwards

CHL 
Aug 20, 

20:00 GMT



Large-scale Available Potential Energy (APE) Large-scale Kinetic Energy (KE)

• Both APE and KE decrease during the relaxation period
• Transfer from large-scale window to mesoscale window takes place to account 

for the decrease in energy (as confirmed by transfer and mesoscale terms)

August 18 August 19 August 20

August 21 August 22 August 23 August 23August 22August 21

August 20August 19August 18

Windows: Large-scale (>= 8days; > 30km), mesoscale (0.5-8 days), and sub-mesoscale (< 0.5 days)

Multi-Scale Energy and Vorticity Analysis

Dr. X. San Liang

• Multiscale window decomposition in space and time (wavelet-based) of energy/vorticity eqns.
• For example, consider Energetics During Relaxation Period:



Approaches to Multi-Model Adaptive Forecasting
Combine ROMS/HOPS re-analysis temperatures

to fit the M2-buoy temperature at 10 m

By combining the models x1 and x2 we attempt to:
1. eliminate and learn systematic errors
2. reduce random errors
• Approach utilized here: neural networks
• A neural network is a non-linear operator which can be 

adapted (trained) to approximate a target arbitrary non-
linear function measuring model-data misfits:

Sigmoidal Transfer Function

Single Sigmoidal layer:

Oleg Logoutov

Linear least-squares fit:

d



Top: Green – HOPS/ROMS reanalysis 
combined via neural network trained on the 
first subset of data (before Aug 17).

Bottom: Green – HOPS/ROMS reanalysis 
combined via adaptive neural network also 
trained on the first subset of data (before Aug 
17), but over moving-window of 3 days 
decorrelation 

Neural Network Least Squares Fit

Linear Least Squares Fit

Individual
Models

Equal Weights

• Observed (black) temp at the M2mooring
• Modeled temp at the M2mooring:

ROMS re-analysis, HOPS re-analysis



AOSN-II Conclusions
• Monterey-California Current System August 2003 Real-time: 

• Fully nonlinear ESSE carried-out consistent: ensemble forecast of fields and errors of 
2-3 days duration, Data assimilation, Adaptive sampling and Dynamical analyses

• Onset and sustained upwelling and relaxation phenomena were successfully 
captured, together with their dynamic mesoscale variabilities and their impacts on 
uncertainties

• Preliminary evaluations of real-time forecasts indicate generally good RMS/Bias 
values that beat persistence

• Quantitative adaptive sampling through forecasts optimal error reduction 
• Field and error evolutions, and multi-scale dynamical analyses indicate that 

during relaxation, energies are transferred from large-scale to mesocales
• Combined HOPS-ROMS model estimates trained via neural networks yields an 

estimate with less error than each
• Tidal effects introduce smaller scales and alter mesoscale features
• Ongoing research includes: 

• Re-analysis fields, descriptive dynamics, methods for skill determination and error 
models, Coupled physical-biological estimation, Predictability studies
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