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Interdisciplinary Ocean Science 
Today

• Research underway on coupled physical, 
biological, chemical, sedimentological, 
acoustical, optical processes

• Ocean prediction for science and operational 
applications has now been initiated on basin and 
regional scales

• Interdisciplinary processes are now known to 
occur on multiple interactive scales in space and 
time with bi-directional feedbacks



System Concept

• The concept of Ocean Observing and Prediction 
Systems for field and parameter estimations has 
recently crystallized with three major components
∗ An observational network: a suite of platforms and 

sensors for specific tasks
∗ A suite of interdisciplinary dynamical models
∗ Data assimilation schemes

• Systems are modular, based on distributed 
information providing shareable, scalable, flexible 
and efficient workflow and management





Interdisciplinary Data 
Assimilation

• Data assimilation can contribute powerfully 
to understanding and modeling physical-
acoustical-biological processes and is 
essential for ocean field prediction and 
parameter estimation

• Model-model, data-data and data-model 
compatibilities are essential and dedicated 
interdisciplinary research is needed



Almeira-Oran front in Mediterranean Sea
Fielding et al, JMS, 2001

Physics - Density

Biology –
Fluorescence 
(Phytoplankton)

Acoustics –
Backscatter 
(Zooplankton)

Griffiths et al,
Vol 12, THE SEA



Coupled Interdisciplinary Error Covariances

Physics:  xO = [T, S, U, V, W]

Biology:  xB = [Ni, Pi, Zi, Bi, Di, Ci]

Acoustics:  xA = [Pressure (p), Phase (ϕ)]

x = [xA xO xB]

xO
cO

P = ε {(x – x t ) ( x – x t )T}ˆ ˆ

PAA PAO PAB

P =   POA POO POB

PBA PBO PBB



End-to-End System Concept

• Sonar performance prediction requires end-to-end scientific 
systems: ocean physics, bottom geophysics, geo-acoustics, 
underwater acoustics, sonar systems and signal processing  

• Uncertainties inherent in measurements, models, transfer of 
uncertainties among linked components

• Resultant uncertainty in sonar performance prediction itself

• Specific applications require the consideration of a variety of 
specific end-to-end systems



End-to-End System





AD: Acoustical Data
MD: Meteorological Data
PD: Physical Data
GD: Geological Data
ND: Noise Data
SD: Sonar Data
PMD: Physical Model Data
BMD: Bottom Model Data
NMD: Noise Model Data
APMD: Acous. Prop. Model Data
SMD: Sonar Model Data
TMD: Target Model Data





Coupled (Dynamical) Models and Outputs
BOTTOM MODELS
•Hamilton model, Sediment flux models (G&G), etc
•Statistical/stochastic models fit-to-data

OUTPUTS
•Wave-speed, density and attenuation coefficients

NOISE MODELS
•Wenz diagram, empirical models/rule of thumbs

OUTPUTS
•f-dependent ambient noise (f,x,y,z,t): due to sea-
surface, shipping, biologics

SONAR SYS. MODELS AND SIGNAL PROCES.
•Sonar equations (f,t)
•Detection, localization, classification and tracking 
models and their inversions

OUTPUTS
•SNR, SIR, SE, FOM
•Beamforming, spectral analyses outputs 
(time/frequency domains)

TARGET MODELS
•Measured/Empirical

OUTPUTS: SL, TS for active

PHYSICAL MODELS
•Non-hydrostatic models (PDE, x,y,z,t)
•Primitive-Eqn. models (PDE, x,y,z,t)
•Quasi-geostrophic models, shallow-water
•Objective maps, balance eqn. (thermal-wind)
•Feature models

OUTPUTS
•T, S , velocity fields and parameters, C field
•Dynamical balances

ACOUS.  PROP. MODELS
•Parabolic-Eqn. models (x,y,z,t/f)
•(Coupled)-Normal-Mode parabolic-eqn. (x,z,f)
•Wave number eqn. models (x,z,f: OASIS)
•Ray-tracing models  (CASS)

OUTPUTS
•Full-field TL (pressure p, phase ϕ)
•Modal decomposition of p field
•Processed series: arrival strut., travel times, etc.
•CW / Broadband TL

REVERBERATION MODELS (active)
•Surface, volume and bottom scattering models

OUTPUTS: scattering strengths



DEFINITION AND REPRESENTATION OF UNCERTAINTY

• x = estimate of some quantity (measured, predicted, calculated)

• x t  = actual value (unknown true nature)

• e = x - x t  (unknown error)

Uncertainty in x is a representation of the error estimate e
e.g. probability distribution function of e

• Variability in x vs. Uncertainty in x

• Uncertainties in general have structures, in time and in space



Data Assimilation







CLASSES OF DATA ASSIMILATION SCHEMES

• Estimation Theory (Filtering and Smoothing)
1. Direct Insertion, Blending, Nudging
2. Optimal interpolation
3. Kalman filter/smoother
4. Bayesian estimation (Fokker-Plank equations)
5. Ensemble/Monte-Carlo methods
6. Error-subspace/Reduced-order methods: Square-root 

filters, e.g. SEEK
7. Error Subspace Statistical Estimation (ESSE): 5 and 6

• Control Theory/Calculus of Variations (Smoothing)
1. “Adjoint methods” (+ descent)
2. Generalized inverse (e.g. Representer method + descent)

• Optimization Theory (Direct local/global smoothing)
1. Descent methods (Conjugate gradient, Quasi-Newton, etc)
2. Simulated annealing, Genetic algorithms

• Hybrid Schemes
• Combinations of the above

- Lin
- Lin., LS
- Linear, LS
- Non-linear, Non-LS
- Non-linear, LS/Non-LS
- (Non)-Linear, LS

-Non-linear, LS/Non-LS

- Lin, LS
- Lin, LS

- Lin, LS/Non-LS
- Non-linear, LS/Non-LS



Harvard Ocean Prediction System - HOPS





Physics:  xO = [T, S, U, V, W]

Acoustics:  xA = [Pressure (p), Phase (ϕ)]

x = [xA xO]
cO

Coupled discrete state vector x (from continuous φi)

Coupled error covariance
PAA PAO

POA POO
P = ε {(x – x t ) ( x – x t )T}ˆ ˆ P =

Coupled assimilation

x+ = x- + PHT [HPHT+R]-1 (y-Hx-); 

x- = A priori estimate (for forecast) 
x+ = A posteriori estimate (after assimilation)



Real-Time Initialization of the 
Dominant Error Covariance Decomposition

• Real-time Assumptions
• Dominant uncertainties are missing or uncertain variability in initial 
state, e.g., smaller mesoscale variability

• Issues
• Some state variables are not observed
• Uncertain variability is multiscale

• Approach: Multi-variate, 3D, Multi-scale
• “Observed” portions

• Directly specified and eigendecomposed from differences between 
the intial state and data, and/or from a statistical model fit to these 
differences

• “Non-observed” portions
• Keep “observed” portions fixed and compute “non-
observed”portions from ensemble of numerical (stochastic) 
dynamical simulations



PRIMER



PRIMER End-to-End Problem
Initial Focus on Passive Sonar Problem

Location: Shelfbreak PRIMER 
Region
Season: July-August 1996
Sonar System (Receiver): Passive 
Towed Array
Target: Simulated UUV (with 
variable source level)
Frequency Range: 100 to 500 Hz
Geometries: Receiver operating on 
the shelf shallow water;
target operating on the shelf slope 
(deeper water than receiver)



PHYSICAL-ACOUSTICAL FILTERING IN A SHELFBREAK ENVIRONMENT





Acoustic paths considered (as in Shelfbreak-PRIMER),
overlaid on bathymetry.



Histogram of Difference Between Model 
and Measured SIR, SIRE-PDF

Difference Between Model and Measurement, dB

• Represents 
uncertainty in our 
ability to model 
actual 
performance of 
system

•Accounts for 
inherent 
variability of 
environment not 
known by current 
model



Determination of PPD (Predictive Probability
Of Detection) using SIRE-PDF

Systems-based PDF (incorporates 
environmental and system uncertainty)

Used by UNITES to characterize and transfer uncertainty 
from environment through end-to-end problems



Starting with physical environmental data, compute the 
PPD from first principals via broadband TL

• Novel approach: coupled physical-acoustical data 
assimilation method is used in TL estimation

• Methodology: coupled physical-acoustical identical-
twin experiment
– ESSE based
– Model generates “true” ocean
– 79 member ensemble for a priori estimate
– Coarsely sampled CTD and TL measurements are 

assimilated for a posteriori estimate







Monte Carlo simulation example: transfer of ocean physical forecast
Uncertainty to acoustic prediction uncertainty in a shelfbreak environment.





Coupled ESSE 
data assimilation 
of sound-speed 

and TL data 
for a joint 
estimate of 

sound-speed and 
TL fields 
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CONCLUSIONS: Coupled ESSE Identical-Twin Experiments

• Oceans physics/acoustics data assimilation: carried-out as a 
single multi-scale joint estimation for the first time, using 
higher-moments to characterize uncertainties

• ESSE nonlinear coupled assimilation recovers fine-scale TL 
structures (10-100m) and mesoscale ocean physics (10km) 
from coarse TL data (towed-receiver at 70m depth, one data 
every 500m) and/or coarse C data (2-3 profiles over 40km)

• Two notable coupled processes:
– Shoreward meander of upper-front leads to less loss in acoustic 

waveguide (cold pool) on shelf

– Corresponding thickening of thermocline at the front induces phase 
shifts in ray patterns on the shelf

• Broadband TL uncertainties predicted to be range and depth 
dependent

• Coupled DA sharpens and homogenizes broadband PDFs



Summary



CONCLUSIONS
• Entering a new era of fully interdisciplinary 

ocean science and ocean acoustics

• Ocean prediction systems for science, 
operations and management

• Interdisciplinary estimation of state variables 
and error fields via multivariate physical-
biological-acoustical data assimilation

• Novel and challenging opportunities for 
theoretical and computational acoustics
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